Nuprl Lemma : geo-Op-sep

g:EuclideanPlane. ∀p:{p:Point| O_X_p} .  O ≠ p


Proof




Definitions occuring in Statement :  geo-X: X geo-O: O euclidean-plane: EuclideanPlane geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: squash: T implies:  Q sq_stable: SqStable(P) euclidean-plane: EuclideanPlane member: t ∈ T all: x:A. B[x]
Lemmas referenced :  geo-between_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf set_wf geo-sep-O-X geo-X_wf geo-between-sep geo-O_wf sq_stable__geo-sep
Rules used in proof :  lambdaEquality independent_isectElimination instantiate applyEquality isectElimination imageElimination baseClosed imageMemberEquality sqequalRule independent_functionElimination hypothesisEquality hypothesis because_Cache dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut rename thin setElimination lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p:\{p:Point|  O\_X\_p\}  .    O  \mneq{}  p



Date html generated: 2017_10_02-PM-03_29_05
Last ObjectModification: 2017_08_04-PM-09_35_35

Theory : euclidean!plane!geometry


Home Index