Nuprl Lemma : geo-length-equiv

e:BasicGeometry. EquivRel({p:Point| O_X_p} ;x,y.x ≡ y)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-X: X geo-O: O geo-eq: a ≡ b geo-between: a_b_c geo-point: Point equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: sym: Sym(T;x,y.E[x; y]) implies:  Q trans: Trans(T;x,y.E[x; y]) basic-geometry-: BasicGeometry-
Lemmas referenced :  geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-between_wf geo-O_wf geo-X_wf geo-eq_inversion geo-eq_wf geo-eq_transitivity subtype_rel_self basic-geometry-_wf geo-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation setIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination setElimination rename inhabitedIsType

Latex:
\mforall{}e:BasicGeometry.  EquivRel(\{p:Point|  O\_X\_p\}  ;x,y.x  \mequiv{}  y)



Date html generated: 2019_10_16-PM-01_14_58
Last ObjectModification: 2018_11_12-PM-03_30_14

Theory : euclidean!plane!geometry


Home Index