Nuprl Lemma : out-cong-angle

e:BasicGeometry. ∀a,b,c,a',c':Point.  (out(b cc')  out(b aa')  abc ≅a a'bc')


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q cand: c∧ B basic-geometry: BasicGeometry geo-out: out(p ab)
Lemmas referenced :  geo-out_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle-refl geo-sep-sym geo-out_weakening geo-eq_weakening out-preserves-angle-cong_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination independent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',c':Point.    (out(b  cc')  {}\mRightarrow{}  out(b  aa')  {}\mRightarrow{}  abc  \00D0\msuba{}  a'bc')



Date html generated: 2017_10_02-PM-06_30_22
Last ObjectModification: 2017_08_17-PM-06_16_30

Theory : euclidean!plane!geometry


Home Index