Nuprl Lemma : geo-cong-angle-symm2

e:BasicGeometry. ∀a,b,c,x,y,z:Point.  (xyz ≅a abc  abc ≅a xyz)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a cand: c∧ B uiff: uiff(P;Q)
Lemmas referenced :  geo-cong-angle_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-congruent-iff-length geo-between_wf geo-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_pairFormation hypothesis universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality inhabitedIsType applyEquality instantiate independent_isectElimination sqequalRule dependent_pairFormation_alt dependent_functionElimination because_Cache equalitySymmetry productIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.    (xyz  \mcong{}\msuba{}  abc  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz)



Date html generated: 2019_10_16-PM-01_22_25
Last ObjectModification: 2018_11_07-PM-00_53_05

Theory : euclidean!plane!geometry


Home Index