Nuprl Lemma : cong-angle-out-exists-cong3
∀e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  (abc ≅a xyz ⇒ (∃a',c':Point. (out(b a'a) ∧ out(b c'c) ∧ a'bc' ≅a xyz ∧ Cong3(a'bc',xyz))))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
exists: ∃x:A. B[x], 
geo-midpoint: a=m=b, 
guard: {T}, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
basic-geometry-: BasicGeometry-, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
geo-cong-tri: Cong3(abc,a'b'c'), 
uiff: uiff(P;Q)
Lemmas referenced : 
symmetric-point-construction, 
geo-sep-sym, 
geo-proper-extend-exists, 
midpoint-sep, 
geo-between-sep, 
geo-out-iff-between1, 
euclidean-plane-axioms, 
geo-strict-between-sep3, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-strict-between-sep2, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-out_inversion, 
geo-out_wf, 
geo-congruent_wf, 
geo-cong-angle_wf, 
geo-cong-tri_wf, 
geo-point_wf, 
geo-out_weakening, 
geo-eq_weakening, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-sas2, 
out-preserves-angle-cong_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
rename, 
dependent_pairFormation_alt, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
independent_pairFormation, 
productIsType, 
universeIsType, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    (abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  (\mexists{}a',c':Point.  (out(b  a'a)  \mwedge{}  out(b  c'c)  \mwedge{}  a'bc'  \mcong{}\msuba{}  xyz  \mwedge{}  Cong3(a'bc',xyz))))
Date html generated:
2019_10_16-PM-01_50_12
Last ObjectModification:
2018_11_19-AM-10_46_45
Theory : euclidean!plane!geometry
Home
Index