Nuprl Lemma : oriented-colinear-append
∀e:OrientedPlane. ∀L1,L2:Point List.
  ((∃A,B:Point. (A ≠ B ∧ ((A ∈ L1) ∧ (A ∈ L2)) ∧ (B ∈ L1) ∧ (B ∈ L2)))
  
⇒ geo-colinear-set(e; L1)
  
⇒ geo-colinear-set(e; L2)
  
⇒ geo-colinear-set(e; L1 @ L2))
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
l_member: (x ∈ l)
, 
append: as @ bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
euclidean-plane: EuclideanPlane
, 
oriented-plane: OrientedPlane
Lemmas referenced : 
geo-colinear-append
Rules used in proof : 
hypothesis, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalRule, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}e:OrientedPlane.  \mforall{}L1,L2:Point  List.
    ((\mexists{}A,B:Point.  (A  \mneq{}  B  \mwedge{}  ((A  \mmember{}  L1)  \mwedge{}  (A  \mmember{}  L2))  \mwedge{}  (B  \mmember{}  L1)  \mwedge{}  (B  \mmember{}  L2)))
    {}\mRightarrow{}  geo-colinear-set(e;  L1)
    {}\mRightarrow{}  geo-colinear-set(e;  L2)
    {}\mRightarrow{}  geo-colinear-set(e;  L1  @  L2))
Date html generated:
2017_10_02-PM-04_46_35
Last ObjectModification:
2017_08_07-AM-11_10_35
Theory : euclidean!plane!geometry
Home
Index