Nuprl Lemma : oriented-colinear-trans
∀e:OrientedPlane
  ∀[A,C,B,D:Point].  (Colinear(A;B;C) 
⇒ Colinear(B;C;D) 
⇒ B ≠ C 
⇒ {Colinear(A;C;D) ∧ Colinear(A;B;D)})
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
euclidean-plane: EuclideanPlane
, 
oriented-plane: OrientedPlane
Lemmas referenced : 
geo-colinear-transitivity
Rules used in proof : 
hypothesis, 
sqequalSubstitution, 
sqequalReflexivity, 
sqequalRule, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity
Latex:
\mforall{}e:OrientedPlane
    \mforall{}[A,C,B,D:Point].
        (Colinear(A;B;C)  {}\mRightarrow{}  Colinear(B;C;D)  {}\mRightarrow{}  B  \mneq{}  C  {}\mRightarrow{}  \{Colinear(A;C;D)  \mwedge{}  Colinear(A;B;D)\})
Date html generated:
2017_10_02-PM-04_46_32
Last ObjectModification:
2017_08_07-AM-10_57_23
Theory : euclidean!plane!geometry
Home
Index