Step
*
2
1
of Lemma
outer-pasch-strict
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. y : Point
7. x leftof ba
8. b # c
9. B(abc)
10. b-x-y
11. b leftof ax
12. a leftof xb
⊢ ∃p:Point [(a-x-p ∧ c-p-y)]
BY
{ (((Assert c leftof ax BY
           (InstLemma `left-convex2` [⌜e⌝;⌜a⌝;⌜x⌝;⌜b⌝;⌜c⌝]⋅ THEN Auto))
    THEN (Assert y leftof xa BY
                (InstLemma `left-between-implies-right1` [⌜e⌝;⌜a⌝;⌜x⌝;⌜b⌝;⌜y⌝]⋅ THEN Auto))
    )
   THEN InstLemma `use-plane-sep_strict` [⌜e⌝;⌜x⌝;⌜a⌝;⌜y⌝;⌜c⌝]⋅
   THEN Auto) }
1
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. y : Point
7. x leftof ba
8. b # c
9. B(abc)
10. b-x-y
11. b leftof ax
12. a leftof xb
13. c leftof ax
14. y leftof xa
15. ∃x@0:Point. (Colinear(x;a;x@0) ∧ y-x@0-c)
⊢ ∃p:Point [(a-x-p ∧ c-p-y)]
Latex:
Latex:
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  x  :  Point
6.  y  :  Point
7.  x  leftof  ba
8.  b  \#  c
9.  B(abc)
10.  b-x-y
11.  b  leftof  ax
12.  a  leftof  xb
\mvdash{}  \mexists{}p:Point  [(a-x-p  \mwedge{}  c-p-y)]
By
Latex:
(((Assert  c  leftof  ax  BY
                  (InstLemma  `left-convex2`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THEN  Auto))
    THEN  (Assert  y  leftof  xa  BY
                            (InstLemma  `left-between-implies-right1`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}]\mcdot{}  THEN  Auto))
    )
  THEN  InstLemma  `use-plane-sep\_strict`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}
  THEN  Auto)
Home
Index