Step * 1 of Lemma plane-sep-imp-Opasch_left-strict


1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. Point
7. leftof ab
8. c
9. leftof bx
10. leftof xa
11. B(abc)
12. b-x-y
⊢ ∃p:Point [(a-x-p ∧ c-p-y)]
BY
(((InstLemma `left-convex` [⌜e⌝;⌜x⌝;⌜a⌝;⌜b⌝;⌜c⌝]⋅ THEN Auto)
    THEN InstLemma `left-between-implies-right2` [⌜e⌝;⌜x⌝;⌜a⌝;⌜b⌝;⌜y⌝]⋅
    THEN Auto)
   THEN (((InstLemma `use-plane-sep_strict` [⌜e⌝;⌜a⌝;⌜x⌝;⌜y⌝;⌜c⌝]⋅ THEN Auto) THEN ExRepD) THEN RenameVar `d' (15))
   THEN InstConcl [⌜d⌝]⋅
   THEN Auto) }

1
1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. Point
7. leftof ab
8. c
9. leftof bx
10. leftof xa
11. B(abc)
12. b-x-y
13. leftof xa
14. leftof ax
15. Point
16. Colinear(a;x;d)
17. y-d-c
⊢ a-x-d


Latex:


Latex:

1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  x  :  Point
6.  y  :  Point
7.  x  leftof  ab
8.  b  \#  c
9.  a  leftof  bx
10.  b  leftof  xa
11.  B(abc)
12.  b-x-y
\mvdash{}  \mexists{}p:Point  [(a-x-p  \mwedge{}  c-p-y)]


By


Latex:
(((InstLemma  `left-convex`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THEN  Auto)
    THEN  InstLemma  `left-between-implies-right2`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}]\mcdot{}
    THEN  Auto)
  THEN  (((InstLemma  `use-plane-sep\_strict`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THEN  Auto)  THEN  ExRepD)
              THEN  RenameVar  `d'  (15)
              )
  THEN  InstConcl  [\mkleeneopen{}d\mkleeneclose{}]\mcdot{}
  THEN  Auto)




Home Index