Step
*
of Lemma
proj-point-sep_defA
∀e:EuclideanParPlane. ∀p,q:Point + Line. (proj-point-sep(e;p;q)
⇒ (∃n:Line?. ((¬pp-sep(e;p;n)) ∧ pp-sep(e;q;n))))
BY
{ (((Auto THEN DVar `p' THEN DVar `q') THEN Unfold `proj-point-sep` -1) THEN All Reduce⋅) }
1
1. e : EuclideanParPlane
2. x : Point
3. x1 : Point
4. x ≠ x1
⊢ ∃n:Line?. ((¬pp-sep(e;inl x;n)) ∧ pp-sep(e;inl x1;n))
2
1. e : EuclideanParPlane
2. x : Point
3. y : Line
4. True
⊢ ∃n:Line?. ((¬pp-sep(e;inl x;n)) ∧ pp-sep(e;inr y ;n))
3
1. e : EuclideanParPlane
2. y : Line
3. x : Point
4. True
⊢ ∃n:Line?. ((¬pp-sep(e;inr y ;n)) ∧ pp-sep(e;inl x;n))
4
1. e : EuclideanParPlane
2. y : Line
3. y1 : Line
4. y \/ y1
⊢ ∃n:Line?. ((¬pp-sep(e;inr y ;n)) ∧ pp-sep(e;inr y1 ;n))
Latex:
Latex:
\mforall{}e:EuclideanParPlane. \mforall{}p,q:Point + Line.
(proj-point-sep(e;p;q) {}\mRightarrow{} (\mexists{}n:Line?. ((\mneg{}pp-sep(e;p;n)) \mwedge{} pp-sep(e;q;n))))
By
Latex:
(((Auto THEN DVar `p' THEN DVar `q') THEN Unfold `proj-point-sep` -1) THEN All Reduce\mcdot{})
Home
Index