Nuprl Lemma : projective-plane-subtype-basic
ProjectivePlane ⊆r BasicProjectivePlane
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
basic-projective-plane: BasicProjectivePlane
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
basic-projective-plane: BasicProjectivePlane
, 
projective-plane: ProjectivePlane
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
projective-plane_wf, 
projective-plane-structure_subtype, 
basic-pgeo-axioms_wf, 
projective-plane-structure-complete_subtype
Rules used in proof : 
isectElimination, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
introduction, 
applyEquality, 
hypothesisEquality, 
productElimination, 
dependent_set_memberEquality, 
cut, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
ProjectivePlane  \msubseteq{}r  BasicProjectivePlane
Date html generated:
2018_05_22-PM-00_41_14
Last ObjectModification:
2017_11_28-PM-04_19_46
Theory : euclidean!plane!geometry
Home
Index