Step
*
1
1
3
4
of Lemma
rectangle-sides-cong
.....aux.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. e # ac
9. f # eb
10. ac ⊥b be
11. df ⊥e eb
12. d-e-f
13. a-b-c
14. ab ≅ eb
15. bc ≅ eb
16. de ≅ eb
17. ef ≅ eb
18. ae ≅ ce
19. db ≅ fb
20. db ≅ ae
21. feb ≅a deb
22. abe ≅a cbe
23. a leftof eb
24. f leftof be
25. x : Point
26. Colinear(e;b;x)
27. a-x-f
28. e-b-x
⊢ B(exb)
BY
{ ((Assert ⌜False⌝⋅ THEN Auto)
THEN ((InstLemma `outer-pasch-strict` [⌜g⌝;⌜a⌝;⌜x⌝;⌜f⌝;⌜b⌝;⌜e⌝]⋅ THENA Auto) THEN ExRepD)
THEN (InstLemma `right-angles-not-complementary` [⌜g⌝;⌜p⌝;⌜e⌝;⌜b⌝]⋅ THENA Auto)
THEN (Assert e # b BY
Auto)
THEN Auto) }
Latex:
Latex:
.....aux.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. e \# ac
9. f \# eb
10. ac \mbot{}b be
11. df \mbot{}e eb
12. d-e-f
13. a-b-c
14. ab \mcong{} eb
15. bc \mcong{} eb
16. de \mcong{} eb
17. ef \mcong{} eb
18. ae \mcong{} ce
19. db \mcong{} fb
20. db \mcong{} ae
21. feb \mcong{}\msuba{} deb
22. abe \mcong{}\msuba{} cbe
23. a leftof eb
24. f leftof be
25. x : Point
26. Colinear(e;b;x)
27. a-x-f
28. e-b-x
\mvdash{} B(exb)
By
Latex:
((Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto)
THEN ((InstLemma `outer-pasch-strict` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{}]\mcdot{} THENA Auto) THEN ExRepD)
THEN (InstLemma `right-angles-not-complementary` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert e \# b BY
Auto)
THEN Auto)
Home
Index