Step
*
1
1
3
6
1
of Lemma
rectangle-sides-cong
.....antecedent.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. e # ac
9. f # eb
10. ac ⊥b be
11. df ⊥e eb
12. d-e-f
13. a-b-c
14. ab ≅ eb
15. bc ≅ eb
16. de ≅ eb
17. ef ≅ eb
18. ae ≅ ce
19. db ≅ fb
20. db ≅ ae
21. feb ≅a deb
22. abe ≅a cbe
23. a leftof eb
24. f leftof be
25. x : Point
26. Colinear(e;b;x)
27. a-x-f
28. x-e-b
29. p : Point
30. f-e-p
31. a-p-b
32. Rbef
⇐ bef ≅a bep
⊢ Rbef
BY
{ ((D 11 THEN Auto) THEN InstHyp [⌜f⌝;⌜b⌝] (13)⋅ THEN EAuto 1) }
Latex:
Latex:
.....antecedent.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. e \# ac
9. f \# eb
10. ac \mbot{}b be
11. df \mbot{}e eb
12. d-e-f
13. a-b-c
14. ab \mcong{} eb
15. bc \mcong{} eb
16. de \mcong{} eb
17. ef \mcong{} eb
18. ae \mcong{} ce
19. db \mcong{} fb
20. db \mcong{} ae
21. feb \mcong{}\msuba{} deb
22. abe \mcong{}\msuba{} cbe
23. a leftof eb
24. f leftof be
25. x : Point
26. Colinear(e;b;x)
27. a-x-f
28. x-e-b
29. p : Point
30. f-e-p
31. a-p-b
32. Rbef \mLeftarrow{}{} bef \mcong{}\msuba{} bep
\mvdash{} Rbef
By
Latex:
((D 11 THEN Auto) THEN InstHyp [\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}] (13)\mcdot{} THEN EAuto 1)
Home
Index