Step
*
1
1
3
7
of Lemma
rectangle-sides-cong
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. e # ac
9. f # eb
10. ac ⊥b be
11. df ⊥e eb
12. d-e-f
13. a-b-c
14. ab ≅ eb
15. bc ≅ eb
16. de ≅ eb
17. ef ≅ eb
18. ae ≅ ce
19. db ≅ fb
20. db ≅ ae
21. feb ≅a deb
22. abe ≅a cbe
23. a leftof eb
24. f leftof be
25. x : Point
26. Colinear(e;b;x)
27. a-x-f
28. B(exb)
⊢ ad ≅ fc ∧ dc ≅ fa
BY
{ ((Assert e # b BY
Auto)
THEN (DoubleNegation THENA EAuto 2)
THEN ((Assert ¬x ≡ b BY
((D 0 THENA Auto)
THEN (Assert Colinear(a;f;c) BY
(EliminatePoint (-1) THEN Auto))
THEN InstLemma `right-angles-not-complementary` [⌜g⌝;⌜f⌝;⌜b⌝;⌜e⌝]⋅
THEN Auto))
THEN Unfold `geo-eq` -1
THEN (SupposeMore (-1) THENA Auto))
THEN (Assert ¬x ≡ e BY
((D 0 THENA Auto)
THEN (Assert Colinear(a;f;e) BY
(EliminatePoint (-1) THEN Auto))
THEN InstLemma `right-angles-not-complementary` [⌜g⌝;⌜a⌝;⌜b⌝;⌜e⌝]⋅
THEN Auto))
THEN Unfold `geo-eq` -1
THEN (SupposeMore (-1) THENA Auto)
THEN (RemoveDoubleNegation THENA Auto)) }
1
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. e # ac
9. f # eb
10. ac ⊥b be
11. df ⊥e eb
12. d-e-f
13. a-b-c
14. ab ≅ eb
15. bc ≅ eb
16. de ≅ eb
17. ef ≅ eb
18. ae ≅ ce
19. db ≅ fb
20. db ≅ ae
21. feb ≅a deb
22. abe ≅a cbe
23. a leftof eb
24. f leftof be
25. x : Point
26. Colinear(e;b;x)
27. a-x-f
28. B(exb)
29. e # b
30. x # b
31. x # e
⊢ ad ≅ fc ∧ dc ≅ fa
Latex:
Latex:
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. e \# ac
9. f \# eb
10. ac \mbot{}b be
11. df \mbot{}e eb
12. d-e-f
13. a-b-c
14. ab \mcong{} eb
15. bc \mcong{} eb
16. de \mcong{} eb
17. ef \mcong{} eb
18. ae \mcong{} ce
19. db \mcong{} fb
20. db \mcong{} ae
21. feb \mcong{}\msuba{} deb
22. abe \mcong{}\msuba{} cbe
23. a leftof eb
24. f leftof be
25. x : Point
26. Colinear(e;b;x)
27. a-x-f
28. B(exb)
\mvdash{} ad \mcong{} fc \mwedge{} dc \mcong{} fa
By
Latex:
((Assert e \# b BY
Auto)
THEN (DoubleNegation THENA EAuto 2)
THEN ((Assert \mneg{}x \mequiv{} b BY
((D 0 THENA Auto)
THEN (Assert Colinear(a;f;c) BY
(EliminatePoint (-1) THEN Auto))
THEN InstLemma `right-angles-not-complementary` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{}]\mcdot{}
THEN Auto))
THEN Unfold `geo-eq` -1
THEN (SupposeMore (-1) THENA Auto))
THEN (Assert \mneg{}x \mequiv{} e BY
((D 0 THENA Auto)
THEN (Assert Colinear(a;f;e) BY
(EliminatePoint (-1) THEN Auto))
THEN InstLemma `right-angles-not-complementary` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{}]\mcdot{}
THEN Auto))
THEN Unfold `geo-eq` -1
THEN (SupposeMore (-1) THENA Auto)
THEN (RemoveDoubleNegation THENA Auto))
Home
Index