Step
*
1
1
of Lemma
right-angle-SAS
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. y : Point
7. z : Point
8. ∀c':Point. (c'=b=c
⇒ ac ≅ ac')
9. a # b
10. b # c
11. ∀c':Point. (c'=y=z
⇒ xz ≅ xc')
12. x # y
13. y # z
14. ab ≅ xy
15. bc ≅ yz
16. c' : Point
17. c-b-c'
18. bc' ≅ cb
19. z' : Point
20. z-y-z'
21. yz' ≅ zy
22. Rabc
23. Rxyz
⊢ ac ≅ xz
BY
{ ((((InstHyp [⌜c'⌝] (8)⋅ THEN Auto) THENA (D 0 THEN Auto))
THEN ((InstHyp [⌜z'⌝] (11)⋅ THEN Auto) THENA (D 0 THEN Auto))
)
THEN (((InstLemma `Euclid-Prop1` [⌜e⌝;⌜c'⌝;⌜c⌝]⋅ THEN Auto) THEN InstLemma `Euclid-Prop1` [⌜e⌝;⌜z'⌝;⌜z⌝]⋅ THEN Auto)
THEN ExRepD
)
THEN RenameVar `t' (26)) }
1
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. y : Point
7. z : Point
8. ∀c':Point. (c'=b=c
⇒ ac ≅ ac')
9. a # b
10. b # c
11. ∀c':Point. (c'=y=z
⇒ xz ≅ xc')
12. x # y
13. y # z
14. ab ≅ xy
15. bc ≅ yz
16. c' : Point
17. c-b-c'
18. bc' ≅ cb
19. z' : Point
20. z-y-z'
21. yz' ≅ zy
22. Rabc
23. Rxyz
24. ac ≅ ac'
25. xz ≅ xz'
26. t : Point
27. EQΔ(t;c;c')
28. c1 : Point
29. EQΔ(c1;z;z')
⊢ ac ≅ xz
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. y : Point
7. z : Point
8. \mforall{}c':Point. (c'=b=c {}\mRightarrow{} ac \mcong{} ac')
9. a \# b
10. b \# c
11. \mforall{}c':Point. (c'=y=z {}\mRightarrow{} xz \mcong{} xc')
12. x \# y
13. y \# z
14. ab \mcong{} xy
15. bc \mcong{} yz
16. c' : Point
17. c-b-c'
18. bc' \mcong{} cb
19. z' : Point
20. z-y-z'
21. yz' \mcong{} zy
22. Rabc
23. Rxyz
\mvdash{} ac \mcong{} xz
By
Latex:
((((InstHyp [\mkleeneopen{}c'\mkleeneclose{}] (8)\mcdot{} THEN Auto) THENA (D 0 THEN Auto))
THEN ((InstHyp [\mkleeneopen{}z'\mkleeneclose{}] (11)\mcdot{} THEN Auto) THENA (D 0 THEN Auto))
)
THEN (((InstLemma `Euclid-Prop1` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}c'\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THEN Auto)
THEN InstLemma `Euclid-Prop1` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}z'\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}]\mcdot{}
THEN Auto)
THEN ExRepD
)
THEN RenameVar `t' (26))
Home
Index