Step
*
2
1
1
of Lemma
rng-pp-nontrivial-1
1. r : IntegDom{i}@i'
2. eq : ∀x,y:|r|. Dec(x = y ∈ |r|)@i
3. l : {p:ℕ3 ⟶ |r|| ¬(p = 0 ∈ (ℕ3 ⟶ |r|))} @i
4. ¬((l 0) = 0 ∈ |r|)
5. ∀i,j:ℕ3.
((¬((l i) = 0 ∈ |r|))
⇒ (¬(i = j ∈ ℤ))
⇒ (λx.if (x =z j) then l i
if (x =z i) then -r (l j)
else 0
fi ∈ {p:ℕ3 ⟶ |r|| (¬(p = 0 ∈ (ℕ3 ⟶ |r|))) ∧ ((p . l) = 0 ∈ |r|)} ))
6. λx.if (x =z 1) then l 0
if (x =z 0) then -r (l 1)
else 0
fi ∈ {p:ℕ3 ⟶ |r|| (¬(p = 0 ∈ (ℕ3 ⟶ |r|))) ∧ ((p . l) = 0 ∈ |r|)}
7. λx.if (x =z 2) then l 0
if (x =z 0) then -r (l 2)
else 0
fi ∈ {p:ℕ3 ⟶ |r|| (¬(p = 0 ∈ (ℕ3 ⟶ |r|))) ∧ ((p . l) = 0 ∈ |r|)}
8. (λx.if (x =z 1) then l 0 if (x =z 0) then -r (l 1) else 0 fi . l) = 0 ∈ |r|
9. (λx.if (x =z 2) then l 0 if (x =z 0) then -r (l 2) else 0 fi . l) = 0 ∈ |r|
⊢ ¬((λx.if (x =z 1) then l 0
if (x =z 0) then -r (l 1)
else 0
fi x λx.if (x =z 2) then l 0
if (x =z 0) then -r (l 2)
else 0
fi )
= 0
∈ (ℕ3 ⟶ |r|))
BY
{ (RepUR ``cross-product`` 0
THEN (D 0 THENA Auto)
THEN (ApFunToHypEquands `Z' ⌜Z 0⌝ ⌜|r|⌝ (-1)⋅ THENA Auto)
THEN RepUR ``zero-vector`` -1
THEN (RW RngNormC (-1) THENA Auto)
THEN D 1
THEN D 2
THEN FHyp 3 [-1]
THEN Auto) }
Latex:
Latex:
1. r : IntegDom\{i\}@i'
2. eq : \mforall{}x,y:|r|. Dec(x = y)@i
3. l : \{p:\mBbbN{}3 {}\mrightarrow{} |r|| \mneg{}(p = 0)\} @i
4. \mneg{}((l 0) = 0)
5. \mforall{}i,j:\mBbbN{}3.
((\mneg{}((l i) = 0))
{}\mRightarrow{} (\mneg{}(i = j))
{}\mRightarrow{} (\mlambda{}x.if (x =\msubz{} j) then l i
if (x =\msubz{} i) then -r (l j)
else 0
fi \mmember{} \{p:\mBbbN{}3 {}\mrightarrow{} |r|| (\mneg{}(p = 0)) \mwedge{} ((p . l) = 0)\} ))
6. \mlambda{}x.if (x =\msubz{} 1) then l 0
if (x =\msubz{} 0) then -r (l 1)
else 0
fi \mmember{} \{p:\mBbbN{}3 {}\mrightarrow{} |r|| (\mneg{}(p = 0)) \mwedge{} ((p . l) = 0)\}
7. \mlambda{}x.if (x =\msubz{} 2) then l 0
if (x =\msubz{} 0) then -r (l 2)
else 0
fi \mmember{} \{p:\mBbbN{}3 {}\mrightarrow{} |r|| (\mneg{}(p = 0)) \mwedge{} ((p . l) = 0)\}
8. (\mlambda{}x.if (x =\msubz{} 1) then l 0 if (x =\msubz{} 0) then -r (l 1) else 0 fi . l) = 0
9. (\mlambda{}x.if (x =\msubz{} 2) then l 0 if (x =\msubz{} 0) then -r (l 2) else 0 fi . l) = 0
\mvdash{} \mneg{}((\mlambda{}x.if (x =\msubz{} 1) then l 0
if (x =\msubz{} 0) then -r (l 1)
else 0
fi x \mlambda{}x.if (x =\msubz{} 2) then l 0
if (x =\msubz{} 0) then -r (l 2)
else 0
fi )
= 0)
By
Latex:
(RepUR ``cross-product`` 0
THEN (D 0 THENA Auto)
THEN (ApFunToHypEquands `Z' \mkleeneopen{}Z 0\mkleeneclose{} \mkleeneopen{}|r|\mkleeneclose{} (-1)\mcdot{} THENA Auto)
THEN RepUR ``zero-vector`` -1
THEN (RW RngNormC (-1) THENA Auto)
THEN D 1
THEN D 2
THEN FHyp 3 [-1]
THEN Auto)
Home
Index