Nuprl Lemma : rng-pp-nontrivial-1

r:IntegDom{i}
  ((∀x,y:|r|.  Dec(x y ∈ |r|))
   (∀l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
        ∃a:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
         (∃b:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))}  [(((a l) 0 ∈ |r|)
                                               ∧ ((b l) 0 ∈ |r|)
                                               ∧ ((a b) 0 ∈ (ℕ3 ⟶ |r|))))])))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} decidable: Dec(P) all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r| scalar-product: (a b) cross-product: (a b) zero-vector: 0
Definitions unfolded in proof :  int_seg: {i..j-} uimplies: supposing a not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: so_apply: x[s] prop: rng: Rng crng: CRng integ_dom: IntegDom{i} so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] cand: c∧ B bfalse: ff rev_implies:  Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) sq_type: SQType(T) or: P ∨ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k guard: {T} zero-vector: 0 subtype_rel: A ⊆B squash: T less_than: a < b infix_ap: y true: True eq_int: (i =z j) decidable: Dec(P) sq_exists: x:A [B[x]] cross-product: (a b) select: L[n] cons: [a b] integ_dom_p: IsIntegDom(r) nequal: a ≠ b ∈  subtract: m
Lemmas referenced :  integ_dom_wf decidable_wf all_wf int-value-type lelt_wf set-value-type zero-vector_wf le_wf false_wf non-zero-component_wf rng_zero_wf rng_car_wf equal_wf not_wf int_seg_wf set_wf scalar-product_wf rng_minus_wf eq_int_wf ifthenelse_wf assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf intformeq_wf intformnot_wf full-omega-unsat int_seg_properties member_wf bnot_wf assert_wf rng_plus_comm rng_plus_inv_assoc crng_times_comm rng_times_over_minus iff_weakening_equal rng_plus_zero rng_plus_ac_1 rng_plus_assoc subtype_rel_self rng_times_zero true_wf squash_wf rng_times_wf infix_ap_wf rng_plus_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf intformless_wf intformand_wf int_seg_subtype int_seg_cases int_subtype_base decidable__equal_int scalar-product-3 decidable__le istype-int istype-void decidable__lt istype-le istype-less_than subtype_rel_sets_simple cross-product_wf select_wf cons_wf nil_wf length_of_cons_lemma length_of_nil_lemma itermAdd_wf int_term_value_add_lemma istype-universe rng_minus_zero rng_minus_over_plus rng_minus_minus
Rules used in proof :  intEquality independent_isectElimination equalitySymmetry equalityTransitivity cutEval functionEquality independent_pairFormation dependent_set_memberEquality hypothesisEquality applyEquality because_Cache setElimination lambdaEquality sqequalRule hypothesis natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut rename lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution functionExtensionality productEquality impliesFunctionality cumulativity instantiate unionElimination voidEquality isect_memberEquality dependent_functionElimination int_eqEquality dependent_pairFormation approximateComputation productElimination voidElimination independent_functionElimination applyLambdaEquality universeEquality imageElimination baseClosed imageMemberEquality addEquality hypothesis_subsumption dependent_set_memberEquality_alt dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt universeIsType productIsType lambdaFormation_alt equalityIstype sqequalBase functionIsType inhabitedIsType dependent_set_memberFormation_alt setIsType

Latex:
\mforall{}r:IntegDom\{i\}
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
                \mexists{}a:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  (\mexists{}b:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}    [(((a  .  l)  =  0)  \mwedge{}  ((b  .  l)  =  0)  \mwedge{}  \000C(\mneg{}((a  x  b)  =  0)))])))



Date html generated: 2019_10_16-PM-02_13_33
Last ObjectModification: 2019_08_29-PM-02_57_20

Theory : euclidean!plane!geometry


Home Index