Nuprl Lemma : rng-pp-nontrivial-1
∀r:IntegDom{i}
  ((∀x,y:|r|.  Dec(x = y ∈ |r|))
  
⇒ (∀l:{p:ℕ3 ⟶ |r|| ¬(p = 0 ∈ (ℕ3 ⟶ |r|))} 
        ∃a:{p:ℕ3 ⟶ |r|| ¬(p = 0 ∈ (ℕ3 ⟶ |r|))} 
         (∃b:{p:ℕ3 ⟶ |r|| ¬(p = 0 ∈ (ℕ3 ⟶ |r|))}  [(((a . l) = 0 ∈ |r|)
                                               ∧ ((b . l) = 0 ∈ |r|)
                                               ∧ (¬((a x b) = 0 ∈ (ℕ3 ⟶ |r|))))])))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
integ_dom: IntegDom{i}
, 
rng_zero: 0
, 
rng_car: |r|
, 
scalar-product: (a . b)
, 
cross-product: (a x b)
, 
zero-vector: 0
Definitions unfolded in proof : 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
rng: Rng
, 
crng: CRng
, 
integ_dom: IntegDom{i}
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
bfalse: ff
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
zero-vector: 0
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
less_than: a < b
, 
infix_ap: x f y
, 
true: True
, 
eq_int: (i =z j)
, 
decidable: Dec(P)
, 
sq_exists: ∃x:A [B[x]]
, 
cross-product: (a x b)
, 
select: L[n]
, 
cons: [a / b]
, 
integ_dom_p: IsIntegDom(r)
, 
nequal: a ≠ b ∈ T 
, 
subtract: n - m
Lemmas referenced : 
integ_dom_wf, 
decidable_wf, 
all_wf, 
int-value-type, 
lelt_wf, 
set-value-type, 
zero-vector_wf, 
le_wf, 
false_wf, 
non-zero-component_wf, 
rng_zero_wf, 
rng_car_wf, 
equal_wf, 
not_wf, 
int_seg_wf, 
set_wf, 
scalar-product_wf, 
rng_minus_wf, 
eq_int_wf, 
ifthenelse_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
int_seg_properties, 
member_wf, 
bnot_wf, 
assert_wf, 
rng_plus_comm, 
rng_plus_inv_assoc, 
crng_times_comm, 
rng_times_over_minus, 
iff_weakening_equal, 
rng_plus_zero, 
rng_plus_ac_1, 
rng_plus_assoc, 
subtype_rel_self, 
rng_times_zero, 
true_wf, 
squash_wf, 
rng_times_wf, 
infix_ap_wf, 
rng_plus_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
intformless_wf, 
intformand_wf, 
int_seg_subtype, 
int_seg_cases, 
int_subtype_base, 
decidable__equal_int, 
scalar-product-3, 
decidable__le, 
istype-int, 
istype-void, 
decidable__lt, 
istype-le, 
istype-less_than, 
subtype_rel_sets_simple, 
cross-product_wf, 
select_wf, 
cons_wf, 
nil_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-universe, 
rng_minus_zero, 
rng_minus_over_plus, 
rng_minus_minus
Rules used in proof : 
intEquality, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
cutEval, 
functionEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
setElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
rename, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionExtensionality, 
productEquality, 
impliesFunctionality, 
cumulativity, 
instantiate, 
unionElimination, 
voidEquality, 
isect_memberEquality, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
productElimination, 
voidElimination, 
independent_functionElimination, 
applyLambdaEquality, 
universeEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
addEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
universeIsType, 
productIsType, 
lambdaFormation_alt, 
equalityIstype, 
sqequalBase, 
functionIsType, 
inhabitedIsType, 
dependent_set_memberFormation_alt, 
setIsType
Latex:
\mforall{}r:IntegDom\{i\}
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
                \mexists{}a:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  (\mexists{}b:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}    [(((a  .  l)  =  0)  \mwedge{}  ((b  .  l)  =  0)  \mwedge{}  \000C(\mneg{}((a  x  b)  =  0)))])))
Date html generated:
2019_10_16-PM-02_13_33
Last ObjectModification:
2019_08_29-PM-02_57_20
Theory : euclidean!plane!geometry
Home
Index