Nuprl Lemma : rng_times_over_minus

[r:Rng]. ∀[a,b:|r|].  ((((-r a) b) (-r (a b)) ∈ |r|) ∧ ((a (-r b)) (-r (a b)) ∈ |r|))


Proof




Definitions occuring in Statement :  rng: Rng rng_times: * rng_minus: -r rng_car: |r| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q rng: Rng infix_ap: y uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rng_car_wf rng_wf rng_plus_cancel_l rng_times_wf rng_minus_wf equal_wf squash_wf true_wf infix_ap_wf rng_plus_wf rng_plus_inv iff_weakening_equal rng_times_over_plus rng_zero_wf rng_times_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality extract_by_obid isectElimination setElimination rename hypothesisEquality isect_memberEquality because_Cache applyEquality independent_isectElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:|r|].    ((((-r  a)  *  b)  =  (-r  (a  *  b)))  \mwedge{}  ((a  *  (-r  b))  =  (-r  (a  *  b))))



Date html generated: 2017_10_01-AM-08_17_27
Last ObjectModification: 2017_02_28-PM-02_02_43

Theory : rings_1


Home Index