Nuprl Lemma : non-zero-component_wf

[r:RngSig]. ∀[eq:∀x,y:|r|.  Dec(x y ∈ |r|)]. ∀[k:ℕ]. ∀[a:{a:ℕk ⟶ |r|| ¬(a 0 ∈ (ℕk ⟶ |r|))} ].
  (non-zero-component(r;eq;k;a) ∈ {i:ℕk| ¬((a i) 0 ∈ |r|)} )


Proof




Definitions occuring in Statement :  non-zero-component: non-zero-component(r;eq;k;a) zero-vector: 0 int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng_zero: 0 rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  pi1: fst(t) uimplies: supposing a sq_exists: x:A [B[x]] nat: prop: so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x] subtype_rel: A ⊆B non-zero-vector-implies-ext non-zero-component: non-zero-component(r;eq;k;a) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set_wf subtype_rel_function rng_zero_wf sq_exists_wf zero-vector_wf not_wf int_seg_wf nat_wf equal_wf decidable_wf rng_car_wf all_wf rng_sig_wf subtype_rel_self pi1-axiom non-zero-vector-implies-ext
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality independent_isectElimination because_Cache rename setElimination natural_numberEquality setEquality lambdaEquality hypothesisEquality cumulativity functionEquality isectElimination sqequalHypSubstitution instantiate applyEquality thin hypothesis extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:RngSig].  \mforall{}[eq:\mforall{}x,y:|r|.    Dec(x  =  y)].  \mforall{}[k:\mBbbN{}].  \mforall{}[a:\{a:\mBbbN{}k  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  ].
    (non-zero-component(r;eq;k;a)  \mmember{}  \{i:\mBbbN{}k|  \mneg{}((a  i)  =  0)\}  )



Date html generated: 2018_05_21-PM-09_42_37
Last ObjectModification: 2018_05_21-AM-07_07_22

Theory : matrices


Home Index