Nuprl Lemma : non-zero-component_wf
∀[r:RngSig]. ∀[eq:∀x,y:|r|.  Dec(x = y ∈ |r|)]. ∀[k:ℕ]. ∀[a:{a:ℕk ⟶ |r|| ¬(a = 0 ∈ (ℕk ⟶ |r|))} ].
  (non-zero-component(r;eq;k;a) ∈ {i:ℕk| ¬((a i) = 0 ∈ |r|)} )
Proof
Definitions occuring in Statement : 
non-zero-component: non-zero-component(r;eq;k;a)
, 
zero-vector: 0
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rng_zero: 0
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
pi1: fst(t)
, 
uimplies: b supposing a
, 
sq_exists: ∃x:A [B[x]]
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
non-zero-vector-implies-ext, 
non-zero-component: non-zero-component(r;eq;k;a)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set_wf, 
subtype_rel_function, 
rng_zero_wf, 
sq_exists_wf, 
zero-vector_wf, 
not_wf, 
int_seg_wf, 
nat_wf, 
equal_wf, 
decidable_wf, 
rng_car_wf, 
all_wf, 
rng_sig_wf, 
subtype_rel_self, 
pi1-axiom, 
non-zero-vector-implies-ext
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_isectElimination, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
setEquality, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
instantiate, 
applyEquality, 
thin, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:RngSig].  \mforall{}[eq:\mforall{}x,y:|r|.    Dec(x  =  y)].  \mforall{}[k:\mBbbN{}].  \mforall{}[a:\{a:\mBbbN{}k  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  ].
    (non-zero-component(r;eq;k;a)  \mmember{}  \{i:\mBbbN{}k|  \mneg{}((a  i)  =  0)\}  )
Date html generated:
2018_05_21-PM-09_42_37
Last ObjectModification:
2018_05_21-AM-07_07_22
Theory : matrices
Home
Index