Nuprl Lemma : non-zero-vector-implies-ext

r:RngSig
  ((∀x,y:|r|.  Dec(x y ∈ |r|))  (∀k:ℕ. ∀a:{a:ℕk ⟶ |r|| ¬(a 0 ∈ (ℕk ⟶ |r|))} .  (∃i:ℕ[(¬((a i) 0 ∈ |r|))])))


Proof




Definitions occuring in Statement :  zero-vector: 0 int_seg: {i..j-} nat: decidable: Dec(P) all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng_zero: 0 rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] decidable__false decidable__implies any: any x decidable__not decidable__exists_int_seg non-zero-vector-implies pi1: fst(t) ifthenelse: if then else fi  genrec-ap: genrec-ap it: int_seg_decide: int_seg_decide(d;i;j) member: t ∈ T
Lemmas referenced :  strict4-decide lifting-strict-callbyvalue strict4-spread lifting-strict-decide non-zero-vector-implies decidable__false decidable__implies decidable__not decidable__exists_int_seg
Rules used in proof :  independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}r:RngSig
    ((\mforall{}x,y:|r|.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mforall{}a:\{a:\mBbbN{}k  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  .    (\mexists{}i:\mBbbN{}k  [(\mneg{}((a  i)  =  0))])))



Date html generated: 2018_05_21-PM-09_42_32
Last ObjectModification: 2018_05_20-PM-10_32_56

Theory : matrices


Home Index