Nuprl Lemma : non-zero-vector-implies-ext
∀r:RngSig
  ((∀x,y:|r|.  Dec(x = y ∈ |r|)) ⇒ (∀k:ℕ. ∀a:{a:ℕk ⟶ |r|| ¬(a = 0 ∈ (ℕk ⟶ |r|))} .  (∃i:ℕk [(¬((a i) = 0 ∈ |r|))])))
Proof
Definitions occuring in Statement : 
zero-vector: 0, 
int_seg: {i..j-}, 
nat: ℕ, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
not: ¬A, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T, 
rng_zero: 0, 
rng_car: |r|, 
rng_sig: RngSig
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
uall: ∀[x:A]. B[x], 
decidable__false, 
decidable__implies, 
any: any x, 
decidable__not, 
decidable__exists_int_seg, 
non-zero-vector-implies, 
pi1: fst(t), 
ifthenelse: if b then t else f fi , 
genrec-ap: genrec-ap, 
it: ⋅, 
int_seg_decide: int_seg_decide(d;i;j), 
member: t ∈ T
Lemmas referenced : 
strict4-decide, 
lifting-strict-callbyvalue, 
strict4-spread, 
lifting-strict-decide, 
non-zero-vector-implies, 
decidable__false, 
decidable__implies, 
decidable__not, 
decidable__exists_int_seg
Rules used in proof : 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}r:RngSig
    ((\mforall{}x,y:|r|.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mforall{}a:\{a:\mBbbN{}k  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  .    (\mexists{}i:\mBbbN{}k  [(\mneg{}((a  i)  =  0))])))
Date html generated:
2018_05_21-PM-09_42_32
Last ObjectModification:
2018_05_20-PM-10_32_56
Theory : matrices
Home
Index