Nuprl Lemma : non-zero-vector-implies

r:RngSig
  ((∀x,y:|r|.  Dec(x y ∈ |r|))  (∀k:ℕ. ∀a:{a:ℕk ⟶ |r|| ¬(a 0 ∈ (ℕk ⟶ |r|))} .  (∃i:ℕ[(¬((a i) 0 ∈ |r|))])))


Proof




Definitions occuring in Statement :  zero-vector: 0 int_seg: {i..j-} nat: decidable: Dec(P) all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng_zero: 0 rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q false: False not: ¬A zero-vector: 0 exists: x:A. B[x] prop: sq_exists: x:A [B[x]]
Lemmas referenced :  decidable__exists_int_seg not_wf equal_wf rng_car_wf rng_zero_wf int_seg_wf decidable__not set_wf zero-vector_wf nat_wf all_wf decidable_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality setElimination rename because_Cache hypothesis isectElimination sqequalRule lambdaEquality hypothesisEquality applyEquality independent_functionElimination unionElimination functionExtensionality dependent_pairFormation voidElimination productElimination dependent_set_memberEquality functionEquality

Latex:
\mforall{}r:RngSig
    ((\mforall{}x,y:|r|.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mforall{}a:\{a:\mBbbN{}k  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  .    (\mexists{}i:\mBbbN{}k  [(\mneg{}((a  i)  =  0))])))



Date html generated: 2018_05_21-PM-09_42_29
Last ObjectModification: 2018_05_19-PM-04_34_13

Theory : matrices


Home Index