Nuprl Lemma : pi1-axiom

fst(Ax) ~ ⊥


Proof




Definitions occuring in Statement :  bottom: pi1: fst(t) sqequal: t axiom: Ax
Definitions unfolded in proof :  pi1: fst(t) uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] member: t ∈ T top: Top so_apply: x[s1;s2]
Lemmas referenced :  spread-axiom-sqequal-bottom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
fst(Ax)  \msim{}  \mbot{}



Date html generated: 2016_05_13-PM-03_45_04
Last ObjectModification: 2015_12_26-AM-09_51_11

Theory : computation


Home Index