Nuprl Lemma : pi1-axiom
fst(Ax) ~ ⊥
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
pi1: fst(t)
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
spread-axiom-sqequal-bottom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis
Latex:
fst(Ax)  \msim{}  \mbot{}
Date html generated:
2016_05_13-PM-03_45_04
Last ObjectModification:
2015_12_26-AM-09_51_11
Theory : computation
Home
Index