Nuprl Lemma : spread-axiom-sqequal-bottom
∀[F:Top]. (let a,b = Ax in F[a;b] ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
spread: spread def, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
top_wf, 
base_wf, 
subtype_rel_self, 
subtype_base_sq, 
stuck-spread
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
instantiate, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[F:Top].  (let  a,b  =  Ax  in  F[a;b]  \msim{}  \mbot{})
Date html generated:
2016_05_13-PM-03_45_01
Last ObjectModification:
2016_01_14-PM-07_06_17
Theory : computation
Home
Index