Nuprl Lemma : spread-axiom-sqequal-bottom

[F:Top]. (let a,b Ax in F[a;b] ~ ⊥)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] spread: spread def sqequal: t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] sq_type: SQType(T) implies:  Q guard: {T} so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2]
Lemmas referenced :  top_wf base_wf subtype_rel_self subtype_base_sq stuck-spread
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin baseClosed independent_isectElimination lambdaFormation instantiate because_Cache hypothesis hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination isect_memberEquality voidElimination voidEquality isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[F:Top].  (let  a,b  =  Ax  in  F[a;b]  \msim{}  \mbot{})



Date html generated: 2016_05_13-PM-03_45_01
Last ObjectModification: 2016_01_14-PM-07_06_17

Theory : computation


Home Index