Nuprl Lemma : scalar-product_wf
∀[r:Rng]. ∀[n:ℕ]. ∀[a,b:ℕn ⟶ |r|].  ((a . b) ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-product: (a . b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
so_apply: x[s]
, 
rng: Rng
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
scalar-product: (a . b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
nat_wf, 
rng_car_wf, 
int_seg_wf, 
rng_times_wf, 
rng_sum_wf
Rules used in proof : 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  |r|].    ((a  .  b)  \mmember{}  |r|)
Date html generated:
2018_05_21-PM-09_41_54
Last ObjectModification:
2017_12_18-PM-00_44_17
Theory : matrices
Home
Index