Nuprl Lemma : scalar-product-3
∀[r,a,b:Top]. ((a . b) ~ ((0 +r ((a 0) * (b 0))) +r ((a 1) * (b 1))) +r ((a 2) * (b 2)))
Proof
Definitions occuring in Statement :
scalar-product: (a . b)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
infix_ap: x f y
,
apply: f a
,
natural_number: $n
,
sqequal: s ~ t
,
rng_times: *
,
rng_zero: 0
,
rng_plus: +r
Definitions unfolded in proof :
bfalse: ff
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
subtract: n - m
,
lt_int: i <z j
,
ycomb: Y
,
itop: Π(op,id) lb ≤ i < ub. E[i]
,
grp_id: e
,
pi1: fst(t)
,
pi2: snd(t)
,
grp_op: *
,
add_grp_of_rng: r↓+gp
,
mon_itop: Π lb ≤ i < ub. E[i]
,
rng_sum: rng_sum,
scalar-product: (a . b)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
top_wf
Rules used in proof :
because_Cache,
hypothesisEquality,
thin,
isectElimination,
isect_memberEquality,
sqequalHypSubstitution,
extract_by_obid,
sqequalAxiom,
hypothesis,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[r,a,b:Top]. ((a . b) \msim{} ((0 +r ((a 0) * (b 0))) +r ((a 1) * (b 1))) +r ((a 2) * (b 2)))
Date html generated:
2018_05_21-PM-09_42_20
Last ObjectModification:
2017_12_21-PM-01_38_24
Theory : matrices
Home
Index