Nuprl Lemma : scalar-product-3

[r,a,b:Top].  ((a b) ((0 +r ((a 0) (b 0))) +r ((a 1) (b 1))) +r ((a 2) (b 2)))


Proof




Definitions occuring in Statement :  scalar-product: (a b) uall: [x:A]. B[x] top: Top infix_ap: y apply: a natural_number: $n sqequal: t rng_times: * rng_zero: 0 rng_plus: +r
Definitions unfolded in proof :  bfalse: ff btrue: tt ifthenelse: if then else fi  subtract: m lt_int: i <j ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] grp_id: e pi1: fst(t) pi2: snd(t) grp_op: * add_grp_of_rng: r↓+gp mon_itop: Π lb ≤ i < ub. E[i] rng_sum: rng_sum scalar-product: (a b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution extract_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r,a,b:Top].    ((a  .  b)  \msim{}  ((0  +r  ((a  0)  *  (b  0)))  +r  ((a  1)  *  (b  1)))  +r  ((a  2)  *  (b  2)))



Date html generated: 2018_05_21-PM-09_42_20
Last ObjectModification: 2017_12_21-PM-01_38_24

Theory : matrices


Home Index