Nuprl Lemma : rng_minus_over_plus
∀[r:Rng]. ∀[a,b:|r|].  ((-r (a +r b)) = ((-r b) +r (-r a)) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng: Rng
, 
rng_minus: -r
, 
rng_plus: +r
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_inv: ~
, 
pi2: snd(t)
, 
grp_op: *
, 
rng: Rng
Lemmas referenced : 
grp_inv_thru_op, 
add_grp_of_rng_wf_a, 
grp_subtype_igrp, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:|r|].    ((-r  (a  +r  b))  =  ((-r  b)  +r  (-r  a)))
Date html generated:
2016_05_15-PM-00_21_14
Last ObjectModification:
2015_12_27-AM-00_02_25
Theory : rings_1
Home
Index