Step
*
1
of Lemma
sq_stable-geo-axioms-if
1. [g] : GeometryPrimitives
2. ∀a,b,c:Point. SqStable(B(abc))
3. ∀a,b,c,d:Point. SqStable(ab ≅ cd)
4. ∀a,b,c,d:Point. SqStable(ab>cd)
5. ∀a,b,c:Point. (SqStable(a # bc) ∧ (BasicGeometryAxioms(g)
⇒ a leftof bc
⇒ (¬a leftof cb)))
6. ↓BasicGeometryAxioms(g)
⊢ BasicGeometryAxioms(g)
BY
{ ((Assert ∀a,b,c:Point. (SqStable(a # bc) ∧ (a leftof bc
⇒ (¬a leftof cb))) BY
(ParallelOp -2 THEN RepeatFor 3 (ParallelLast) THEN Auto))
THEN Thin (-3)
THEN D -2
THEN Unhide
THEN Try (Trivial)) }
1
1. [g] : GeometryPrimitives
2. ∀a,b,c:Point. SqStable(B(abc))
3. ∀a,b,c,d:Point. SqStable(ab ≅ cd)
4. ∀a,b,c,d:Point. SqStable(ab>cd)
5. [%6] : BasicGeometryAxioms(g)
6. ∀a,b,c:Point. (SqStable(a # bc) ∧ (a leftof bc
⇒ (¬a leftof cb)))
⊢ SqStable(BasicGeometryAxioms(g))
Latex:
Latex:
1. [g] : GeometryPrimitives
2. \mforall{}a,b,c:Point. SqStable(B(abc))
3. \mforall{}a,b,c,d:Point. SqStable(ab \mcong{} cd)
4. \mforall{}a,b,c,d:Point. SqStable(ab>cd)
5. \mforall{}a,b,c:Point. (SqStable(a \# bc) \mwedge{} (BasicGeometryAxioms(g) {}\mRightarrow{} a leftof bc {}\mRightarrow{} (\mneg{}a leftof cb)))
6. \mdownarrow{}BasicGeometryAxioms(g)
\mvdash{} BasicGeometryAxioms(g)
By
Latex:
((Assert \mforall{}a,b,c:Point. (SqStable(a \# bc) \mwedge{} (a leftof bc {}\mRightarrow{} (\mneg{}a leftof cb))) BY
(ParallelOp -2 THEN RepeatFor 3 (ParallelLast) THEN Auto))
THEN Thin (-3)
THEN D -2
THEN Unhide
THEN Try (Trivial))
Home
Index