Step
*
1
of Lemma
tarski-erect-perp-or
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c # ba
⊢ ∃p,t:Point. (((ab ⊥ pa ∨ ab ⊥ pb) ∧ Colinear(a;b;t)) ∧ p-t-c)
BY
{ (((InstLemma `tarski-perp-in-exists` [⌜e⌝;⌜a⌝;⌜b⌝;⌜c⌝]⋅ THENA Auto) THEN ExRepD)
THEN ((Duplicate 8 THEN D -1) THEN ExRepD)
THEN (InstHyp [⌜a⌝;⌜c⌝](11)⋅ THENA Auto)
THEN (InstHyp [⌜b⌝;⌜c⌝](11)⋅ THENA Auto)) }
1
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c # ba
6. x : Point
7. Colinear(a;b;x)
8. ab ⊥x cx
9. Colinear(a;b;x)
10. Colinear(c;x;x)
11. ∀u,v:Point. (Colinear(a;b;u)
⇒ Colinear(c;x;v)
⇒ Ruxv)
12. Raxc
13. Rbxc
⊢ ∃p,t:Point. (((ab ⊥ pa ∨ ab ⊥ pb) ∧ Colinear(a;b;t)) ∧ p-t-c)
Latex:
Latex:
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c \# ba
\mvdash{} \mexists{}p,t:Point. (((ab \mbot{} pa \mvee{} ab \mbot{} pb) \mwedge{} Colinear(a;b;t)) \mwedge{} p-t-c)
By
Latex:
(((InstLemma `tarski-perp-in-exists` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THENA Auto) THEN ExRepD)
THEN ((Duplicate 8 THEN D -1) THEN ExRepD)
THEN (InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}](11)\mcdot{} THENA Auto)
THEN (InstHyp [\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}](11)\mcdot{} THENA Auto))
Home
Index