Nuprl Lemma : tarski-erect-perp-or

e:HeytingGeometry. ∀a,b,c:Point.  (c ba  (∃p,t:Point. (((ab ⊥ pa ∨ ab ⊥ pb) ∧ Colinear(a;b;t)) ∧ p-t-c)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-perp: ab ⊥ cd geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane heyting-geometry: HeytingGeometry geo-perp-in: ab  ⊥cd exists: x:A. B[x] cand: c∧ B and: P ∧ Q subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) geo-triangle: bc or: P ∨ Q geo-lsep: bc oriented-plane: OrientedPlane uiff: uiff(P;Q) basic-geometry-: BasicGeometry- geo-midpoint: a=m=b right-angle: Rabc geo-strict-between: a-b-c so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q iff: ⇐⇒ Q geo-perp: ab ⊥ cd
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf heyting-geometry_wf subtype_rel_transitivity heyting-geometry-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-triangle_wf geo-left-axioms_wf basic-geo-axioms_wf subtype_rel_self geo-colinear-same geo-triangle-symmetry tarski-perp-in-exists geo-proper-extend-exists lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-colinear-is-colinear-set lsep-colinear-sep geo-length-flip geo-congruent-iff-length geo-between-symmetry geo-strict-between-implies-between geo-sep_wf geo-triangle-property geo-sep-sym geo-sep-or geo-strict-between-sep3 geo-triangle-colinear2 geo-strict-between-implies-colinear geo-strict-between-sep1 geo-triangle-colinear geo-congruent-mid-exists geo-perp-midsegments geo-between-implies-colinear midpoint-sep geo-strict-between-sym double-pasch-exists geo-perp-in-iff geo-strict-between_wf geo-colinear_wf geo-perp_wf or_wf list_ind_nil_lemma list_ind_cons_lemma exists_wf equal_wf l_member_wf cons_member nil_wf cons_wf oriented-colinear-append right-angle_wf geo-perp-in_wf geo-perp-symmetry2
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cumulativity productEquality setEquality productElimination independent_functionElimination dependent_functionElimination rename baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality equalitySymmetry equalityTransitivity unionElimination setElimination lambdaEquality inlFormation inrFormation dependent_pairFormation universeEquality

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (c  \#  ba  {}\mRightarrow{}  (\mexists{}p,t:Point.  (((ab  \mbot{}  pa  \mvee{}  ab  \mbot{}  pb)  \mwedge{}  Colinear(a;b;t))  \mwedge{}  p-t-c)))



Date html generated: 2018_05_22-PM-00_21_17
Last ObjectModification: 2017_10_26-PM-00_37_35

Theory : euclidean!plane!geometry


Home Index