Nuprl Lemma : tarski-perp-in-exists
∀e:HeytingGeometry. ∀a,b,c:Point.  (a # bc 
⇒ (∃x:Point. (Colinear(a;b;x) ∧ ab  ⊥x cx)))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-perp-in: ab  ⊥x cd
, 
geo-colinear: Colinear(a;b;c)
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
heyting-geometry: HeytingGeometry
, 
exists: ∃x:A. B[x]
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
basic-geometry: BasicGeometry
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
oriented-plane: OrientedPlane
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
geo-midpoint: a=m=b
, 
uiff: uiff(P;Q)
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
right-angle: Rabc
Lemmas referenced : 
geo-triangle-property, 
geo-triangle_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-sep-sym, 
geo-proper-extend-exists, 
geo-triangle-colinear, 
geo-strict-between-sep1, 
subtype_rel_self, 
basic-geo-axioms_wf, 
geo-left-axioms_wf, 
geo-colinear-is-colinear-set, 
geo-strict-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
geo-strict-between-sep3, 
geo-congruent-mid-exists, 
geo-triangle-symmetry, 
geo-midpoint_wf, 
implies-right-angle, 
geo-midpoint-symmetry, 
midpoint-sep, 
geo-strict-between-sep2, 
geo-strict-between-sym, 
geo-strict-between-trans3, 
geo-triangle-colinear', 
oriented-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
equal_wf, 
geo-sep_wf, 
exists_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
symmetric-point-construction, 
geo-between-sep, 
geo-between-implies-colinear, 
euclidean-plane-axioms, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-between-outer-trans, 
geo-congruent-symmetry, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-congruent-flip, 
geo-five-segment, 
geo-between-exchange3, 
congruence-preserves-right-angle, 
geo-krippen-lemma, 
right-angle-symmetry, 
geo-colinear_wf, 
geo-perp-in_wf, 
geo-perp-in-iff, 
geo-colinear-same, 
right-angle_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
rename, 
setEquality, 
productEquality, 
cumulativity, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
inrFormation, 
inlFormation, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mexists{}x:Point.  (Colinear(a;b;x)  \mwedge{}  ab    \mbot{}x  cx)))
Date html generated:
2017_10_02-PM-07_10_00
Last ObjectModification:
2017_08_16-PM-00_16_47
Theory : euclidean!plane!geometry
Home
Index