Nuprl Lemma : tarski-perp-in-exists

e:HeytingGeometry. ∀a,b,c:Point.  (a bc  (∃x:Point. (Colinear(a;b;x) ∧ ab  ⊥cx)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-perp-in: ab  ⊥cd geo-colinear: Colinear(a;b;c) geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} and: P ∧ Q cand: c∧ B prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a heyting-geometry: HeytingGeometry exists: x:A. B[x] euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- basic-geometry: BasicGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m oriented-plane: OrientedPlane iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] geo-midpoint: a=m=b uiff: uiff(P;Q) geo-cong-tri: Cong3(abc,a'b'c') right-angle: Rabc
Lemmas referenced :  geo-triangle-property geo-triangle_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-sep-sym geo-proper-extend-exists geo-triangle-colinear geo-strict-between-sep1 subtype_rel_self basic-geo-axioms_wf geo-left-axioms_wf geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-strict-between-sep3 geo-congruent-mid-exists geo-triangle-symmetry geo-midpoint_wf implies-right-angle geo-midpoint-symmetry midpoint-sep geo-strict-between-sep2 geo-strict-between-sym geo-strict-between-trans3 geo-triangle-colinear' oriented-colinear-append cons_wf nil_wf cons_member l_member_wf equal_wf geo-sep_wf exists_wf list_ind_cons_lemma list_ind_nil_lemma symmetric-point-construction geo-between-sep geo-between-implies-colinear euclidean-plane-axioms geo-between-symmetry geo-strict-between-implies-between geo-between-outer-trans geo-congruent-symmetry geo-congruent-iff-length geo-length-flip geo-congruent-flip geo-five-segment geo-between-exchange3 congruence-preserves-right-angle geo-krippen-lemma right-angle-symmetry geo-colinear_wf geo-perp-in_wf geo-perp-in-iff geo-colinear-same right-angle_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination isectElimination applyEquality instantiate independent_isectElimination sqequalRule because_Cache rename setEquality productEquality cumulativity isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed dependent_pairFormation inrFormation inlFormation lambdaEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mexists{}x:Point.  (Colinear(a;b;x)  \mwedge{}  ab    \mbot{}x  cx)))



Date html generated: 2017_10_02-PM-07_10_00
Last ObjectModification: 2017_08_16-PM-00_16_47

Theory : euclidean!plane!geometry


Home Index