Nuprl Lemma : geo-triangle-property

e:HeytingGeometry. ∀a,b,c:Point.  (a bc  {a ≠ b ∧ b ≠ c ∧ c ≠ a ∧ a-b-c) ∧ b-c-a) ∧ c-a-b)})


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-strict-between: a-b-c geo-sep: a ≠ b geo-point: Point guard: {T} all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  false: False geo-strict-between: a-b-c uimplies: supposing a heyting-geometry: Error :heyting-geometry,  uall: [x:A]. B[x] prop: not: ¬A subtype_rel: A ⊆B cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity basic-geometry-subtype geo-point_wf Error :geo-triangle_wf,  geo-strict-between_wf heyting-geometry-subtype geo-sep-sym geo-triangle-implies
Rules used in proof :  voidElimination independent_isectElimination instantiate rename setElimination isectElimination independent_pairFormation sqequalRule applyEquality because_Cache productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (a  \#  bc  {}\mRightarrow{}  \{a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  c  \mneq{}  a  \mwedge{}  (\mneg{}a-b-c)  \mwedge{}  (\mneg{}b-c-a)  \mwedge{}  (\mneg{}c-a-b)\})



Date html generated: 2017_10_02-PM-07_02_10
Last ObjectModification: 2017_08_08-PM-00_41_45

Theory : euclidean!plane!geometry


Home Index