Nuprl Lemma : geo-triangle-property
∀e:HeytingGeometry. ∀a,b,c:Point.  (a # bc 
⇒ {a ≠ b ∧ b ≠ c ∧ c ≠ a ∧ (¬a-b-c) ∧ (¬b-c-a) ∧ (¬c-a-b)})
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-strict-between: a-b-c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
false: False
, 
geo-strict-between: a-b-c
, 
uimplies: b supposing a
, 
heyting-geometry: Error :heyting-geometry, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
guard: {T}
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
Error :heyting-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-point_wf, 
Error :geo-triangle_wf, 
geo-strict-between_wf, 
heyting-geometry-subtype, 
geo-sep-sym, 
geo-triangle-implies
Rules used in proof : 
voidElimination, 
independent_isectElimination, 
instantiate, 
rename, 
setElimination, 
isectElimination, 
independent_pairFormation, 
sqequalRule, 
applyEquality, 
because_Cache, 
productElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (a  \#  bc  {}\mRightarrow{}  \{a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  c  \mneq{}  a  \mwedge{}  (\mneg{}a-b-c)  \mwedge{}  (\mneg{}b-c-a)  \mwedge{}  (\mneg{}c-a-b)\})
Date html generated:
2017_10_02-PM-07_02_10
Last ObjectModification:
2017_08_08-PM-00_41_45
Theory : euclidean!plane!geometry
Home
Index