Nuprl Lemma : geo-triangle-implies

e:HeytingGeometry. ∀a,b,c:Point.
  (a bc  {c ba ∧ ab ∧ a ≠ c ∧ a_b_c) ∧ (∀z:Point. (z ≠  Colinear(a;b;z)  bc))})


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-colinear: Colinear(a;b;c) geo-between: a_b_c geo-sep: a ≠ b geo-point: Point guard: {T} all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  geo-triangle: bc all: x:A. B[x] implies:  Q guard: {T} and: P ∧ Q member: t ∈ T heyting-geometry: HeytingGeometry cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True uall: [x:A]. B[x] select: L[n] cons: [a b] subtract: m subtype_rel: A ⊆B uimplies: supposing a euclidean-plane: EuclideanPlane oriented-plane: OrientedPlane
Lemmas referenced :  lsep-all-sym lsep-implies-sep colinear-lsep-cycle geo-colinear-is-colinear-set length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-colinear_wf geo-sep_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf lsep-not-between subtype_rel_self basic-geo-axioms_wf geo-left-axioms_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination because_Cache isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed isectElimination applyEquality instantiate independent_isectElimination setEquality productEquality cumulativity

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (a  \#  bc
    {}\mRightarrow{}  \{c  \#  ba  \mwedge{}  c  \#  ab  \mwedge{}  a  \mneq{}  c  \mwedge{}  (\mneg{}a\_b\_c)  \mwedge{}  (\mforall{}z:Point.  (z  \mneq{}  b  {}\mRightarrow{}  Colinear(a;b;z)  {}\mRightarrow{}  z  \#  bc))\})



Date html generated: 2017_10_02-PM-07_01_22
Last ObjectModification: 2017_08_09-PM-05_30_17

Theory : euclidean!plane!geometry


Home Index