Nuprl Lemma : geo-triangle-implies
∀e:HeytingGeometry. ∀a,b,c:Point.
  (a # bc 
⇒ {c # ba ∧ c # ab ∧ a ≠ c ∧ (¬a_b_c) ∧ (∀z:Point. (z ≠ b 
⇒ Colinear(a;b;z) 
⇒ z # bc))})
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
geo-triangle: a # bc
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
member: t ∈ T
, 
heyting-geometry: HeytingGeometry
, 
cand: A c∧ B
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
uall: ∀[x:A]. B[x]
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
euclidean-plane: EuclideanPlane
, 
oriented-plane: OrientedPlane
Lemmas referenced : 
lsep-all-sym, 
lsep-implies-sep, 
colinear-lsep-cycle, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
geo-colinear_wf, 
geo-sep_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
lsep-not-between, 
subtype_rel_self, 
basic-geo-axioms_wf, 
geo-left-axioms_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
setEquality, 
productEquality, 
cumulativity
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (a  \#  bc
    {}\mRightarrow{}  \{c  \#  ba  \mwedge{}  c  \#  ab  \mwedge{}  a  \mneq{}  c  \mwedge{}  (\mneg{}a\_b\_c)  \mwedge{}  (\mforall{}z:Point.  (z  \mneq{}  b  {}\mRightarrow{}  Colinear(a;b;z)  {}\mRightarrow{}  z  \#  bc))\})
Date html generated:
2017_10_02-PM-07_01_22
Last ObjectModification:
2017_08_09-PM-05_30_17
Theory : euclidean!plane!geometry
Home
Index