Nuprl Lemma : basic-geo-axioms_wf

[g:GeometryPrimitives]. (BasicGeometryAxioms(g) ∈ ℙ)


Proof




Definitions occuring in Statement :  basic-geo-axioms: BasicGeometryAxioms(g) geo-primitives: GeometryPrimitives uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] and: P ∧ Q prop: basic-geo-axioms: BasicGeometryAxioms(g) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-primitives_wf geo-lsep_wf geo-congruent_wf geo-between_wf geo-left_wf geo-sep_wf not_wf geo-ge_wf geo-gt-prim_wf geo-point_wf all_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality universeIsType inhabitedIsType functionEquality because_Cache lambdaEquality_alt hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:GeometryPrimitives].  (BasicGeometryAxioms(g)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_29-AM-09_12_51
Last ObjectModification: 2019_10_25-PM-01_58_55

Theory : euclidean!plane!geometry


Home Index