Nuprl Lemma : geo-krippen-lemma
∀e:BasicGeometry. ∀a1,a2,b1,b2,c,m1,m2:Point.
  (a1_c_a2 
⇒ b1_c_b2 
⇒ ca1 ≅ cb1 
⇒ ca2 ≅ cb2 
⇒ a1=m1=b1 
⇒ a2=m2=b2 
⇒ m1_c_m2)
Proof
Definitions occuring in Statement : 
geo-midpoint: a=m=b
, 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
stable: Stable{P}
, 
false: False
, 
not: ¬A
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
Lemmas referenced : 
double-negation-hyp-elim, 
not_wf, 
geo-le_wf, 
or_wf, 
stable__geo-between, 
geo-point_wf, 
geo-between_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-congruent_wf, 
geo-midpoint_wf, 
geo-mk-seg_wf, 
geo-length_wf, 
geo-le-cases, 
geo-krippen-aux, 
geo-between-symmetry
Rules used in proof : 
voidElimination, 
independent_functionElimination, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesis, 
rename, 
setElimination, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a1,a2,b1,b2,c,m1,m2:Point.
    (a1\_c\_a2  {}\mRightarrow{}  b1\_c\_b2  {}\mRightarrow{}  ca1  \00D0  cb1  {}\mRightarrow{}  ca2  \00D0  cb2  {}\mRightarrow{}  a1=m1=b1  {}\mRightarrow{}  a2=m2=b2  {}\mRightarrow{}  m1\_c\_m2)
Date html generated:
2017_10_02-PM-06_35_46
Last ObjectModification:
2017_08_05-PM-04_44_53
Theory : euclidean!plane!geometry
Home
Index