Nuprl Lemma : geo-krippen-lemma

e:BasicGeometry. ∀a1,a2,b1,b2,c,m1,m2:Point.
  (a1_c_a2  b1_c_b2  ca1 ≅ cb1  ca2 ≅ cb2  a1=m1=b1  a2=m2=b2  m1_c_m2)


Proof




Definitions occuring in Statement :  geo-midpoint: a=m=b basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  stable: Stable{P} false: False not: ¬A uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: basic-geometry: BasicGeometry uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] or: P ∨ Q
Lemmas referenced :  double-negation-hyp-elim not_wf geo-le_wf or_wf stable__geo-between geo-point_wf geo-between_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-midpoint_wf geo-mk-seg_wf geo-length_wf geo-le-cases geo-krippen-aux geo-between-symmetry
Rules used in proof :  voidElimination independent_functionElimination sqequalRule independent_isectElimination instantiate applyEquality hypothesis rename setElimination hypothesisEquality isectElimination because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a1,a2,b1,b2,c,m1,m2:Point.
    (a1\_c\_a2  {}\mRightarrow{}  b1\_c\_b2  {}\mRightarrow{}  ca1  \00D0  cb1  {}\mRightarrow{}  ca2  \00D0  cb2  {}\mRightarrow{}  a1=m1=b1  {}\mRightarrow{}  a2=m2=b2  {}\mRightarrow{}  m1\_c\_m2)



Date html generated: 2017_10_02-PM-06_35_46
Last ObjectModification: 2017_08_05-PM-04_44_53

Theory : euclidean!plane!geometry


Home Index