Nuprl Lemma : double-negation-hyp-elim
∀[P,Q:ℙ].  ((P 
⇒ (¬Q)) 
⇒ (¬¬P) 
⇒ (¬Q))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    ((P  {}\mRightarrow{}  (\mneg{}Q))  {}\mRightarrow{}  (\mneg{}\mneg{}P)  {}\mRightarrow{}  (\mneg{}Q))
Date html generated:
2016_05_13-PM-03_46_04
Last ObjectModification:
2015_12_26-AM-09_58_43
Theory : call!by!value_2
Home
Index