Nuprl Lemma : double-negation-hyp-elim

[P,Q:ℙ].  ((P  Q))  (¬¬P)  Q))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: not: ¬A implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False prop:
Lemmas referenced :  not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution hypothesis independent_functionElimination voidElimination hypothesisEquality lemma_by_obid isectElimination functionEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache universeEquality isect_memberEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    ((P  {}\mRightarrow{}  (\mneg{}Q))  {}\mRightarrow{}  (\mneg{}\mneg{}P)  {}\mRightarrow{}  (\mneg{}Q))



Date html generated: 2016_05_13-PM-03_46_04
Last ObjectModification: 2015_12_26-AM-09_58_43

Theory : call!by!value_2


Home Index