Nuprl Lemma : geo-congruent-mid-exists

e:HeytingGeometry. ∀A,B,C:Point.  (A BC  CA ≅ CB  (∃x:Point. A=x=B))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-midpoint: a=m=b geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  heyting-geometry: Error :heyting-geometry,  prop: uimplies: supposing a uiff: uiff(P;Q) uall: [x:A]. B[x] subtype_rel: A ⊆B cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf Error :geo-triangle_wf,  Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-length-flip heyting-geometry-subtype geo-congruent-iff-length geo-triangle-symmetry isosceles-mid-exists
Rules used in proof :  rename setElimination instantiate equalitySymmetry equalityTransitivity independent_isectElimination isectElimination sqequalRule applyEquality productElimination hypothesis because_Cache independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}A,B,C:Point.    (A  \#  BC  {}\mRightarrow{}  CA  \00D0  CB  {}\mRightarrow{}  (\mexists{}x:Point.  A=x=B))



Date html generated: 2017_10_02-PM-07_09_30
Last ObjectModification: 2017_08_08-PM-00_41_08

Theory : euclidean!plane!geometry


Home Index