Nuprl Lemma : geo-triangle-colinear

e:HeytingGeometry. ∀a,b,c,z:Point.  (a bc  z ≠  Colinear(a;b;z)  bc)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  heyting-geometry: Error :heyting-geometry,  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf Error :geo-triangle_wf,  Error :basic-geo-primitives_wf,  geo-sep_wf Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity heyting-geometry-subtype basic-geometry-subtype geo-colinear_wf geo-triangle-implies
Rules used in proof :  because_Cache rename setElimination sqequalRule independent_isectElimination instantiate applyEquality isectElimination productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,z:Point.    (a  \#  bc  {}\mRightarrow{}  z  \mneq{}  b  {}\mRightarrow{}  Colinear(a;b;z)  {}\mRightarrow{}  z  \#  bc)



Date html generated: 2017_10_02-PM-07_01_30
Last ObjectModification: 2017_08_06-PM-08_54_42

Theory : euclidean!plane!geometry


Home Index