Nuprl Lemma : geo-triangle-colinear'

e:HeytingGeometry. ∀a,b,c,x,z:Point.  (a bc  x ≠  Colinear(a;b;x)  z ≠  Colinear(x;c;z)  bc)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  heyting-geometry: Error :heyting-geometry,  uimplies: supposing a subtract: m cons: [a b] select: L[n] uall: [x:A]. B[x] true: True squash: T less_than: a < b prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) subtype_rel: A ⊆B cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf Error :geo-triangle_wf,  Error :basic-geo-primitives_wf,  geo-sep_wf Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity basic-geometry-subtype geo-colinear_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma heyting-geometry-subtype geo-colinear-is-colinear-set geo-triangle-symmetry geo-triangle-colinear
Rules used in proof :  rename setElimination independent_isectElimination instantiate because_Cache isectElimination baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality sqequalRule applyEquality productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,z:Point.
    (a  \#  bc  {}\mRightarrow{}  x  \mneq{}  b  {}\mRightarrow{}  Colinear(a;b;x)  {}\mRightarrow{}  z  \mneq{}  c  {}\mRightarrow{}  Colinear(x;c;z)  {}\mRightarrow{}  z  \#  bc)



Date html generated: 2017_10_02-PM-07_01_46
Last ObjectModification: 2017_08_08-PM-00_41_38

Theory : euclidean!plane!geometry


Home Index