Nuprl Lemma : lsep-colinear-sep

g:OrientedPlane. ∀a,b,c:Point.  (a bc  (∀y:Point. (Colinear(y;b;c)  a ≠ y)))


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  oriented-plane: Error :oriented-plane,  or: P ∨ Q prop: and: P ∧ Q uimplies: supposing a guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T implies:  Q all: x:A. B[x] iff: ⇐⇒ Q cand: c∧ B false: False not: ¬A geo-colinear: Colinear(a;b;c)
Lemmas referenced :  geo-lsep_wf Error :basic-geo-primitives_wf,  geo-point_wf geo-colinear_wf geo-sep_wf lsep-implies-sep Error :oriented-plane-subtype,  geo-sep-sym Error :basic-geo-structure_wf,  Error :o-geo-structure_wf,  Error :oriented-plane_wf,  subtype_rel_transitivity Error :oriented-plane-subtype1,  Error :o-geo-structure-subtype,  geo-sep-or lsep-iff lsep-all-sym not_wf geo-between_wf geo-between-symmetry
Rules used in proof :  rename setElimination unionElimination dependent_set_memberEquality productElimination because_Cache independent_functionElimination sqequalRule independent_isectElimination isectElimination instantiate hypothesis applyEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality independent_pairFormation voidElimination

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mforall{}y:Point.  (Colinear(y;b;c)  {}\mRightarrow{}  a  \mneq{}  y)))



Date html generated: 2017_10_02-PM-04_47_27
Last ObjectModification: 2017_08_05-AM-10_20_13

Theory : euclidean!plane!geometry


Home Index