Nuprl Lemma : double-pasch-exists

e:HeytingGeometry. ∀a,b,c,a',b',p:Point.  (a-b-c  a'-b'-c  a-p-a'  aa'  (∃q:Point. (p-q-c ∧ b-q-b')))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B heyting-geometry: Error :heyting-geometry,  uall: [x:A]. B[x] prop: and: P ∧ Q exists: x:A. B[x] member: t ∈ T implies:  Q all: x:A. B[x] subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) cand: c∧ B
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity heyting-geometry-subtype basic-geometry-subtype geo-strict-between_wf Error :geo-triangle_wf,  geo-strict-between-sym geo-inner-pasch-ex geo-triangle-property lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-strict-between-implies-colinear geo-colinear-is-colinear-set geo-strict-between-sep2 geo-sep-sym geo-triangle-symmetry geo-triangle-colinear geo-strict-between-sep3 geo-triangle-colinear2 geo-triangle-colinear3 geo-colinear-same geo-strict-between-sep1 geo-strict-between-trans3 geo-strict-between-trans2 geo-strict-between-trans
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality rename setElimination isectElimination productElimination hypothesis independent_functionElimination hypothesisEquality because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality productEquality dependent_pairFormation

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,a',b',p:Point.
    (a-b-c  {}\mRightarrow{}  a'-b'-c  {}\mRightarrow{}  a-p-a'  {}\mRightarrow{}  c  \#  aa'  {}\mRightarrow{}  (\mexists{}q:Point.  (p-q-c  \mwedge{}  b-q-b')))



Date html generated: 2017_10_02-PM-07_04_33
Last ObjectModification: 2017_08_08-PM-00_38_41

Theory : euclidean!plane!geometry


Home Index