Nuprl Lemma : geo-triangle-colinear3
∀e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  (a # bc 
⇒ x ≠ b 
⇒ Colinear(a;b;x) 
⇒ y ≠ c 
⇒ Colinear(b;c;y) 
⇒ z ≠ x 
⇒ Colinear(c;x;z) 
⇒ x # yz)
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
heyting-geometry: Error :heyting-geometry, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
Lemmas referenced : 
geo-point_wf, 
Error :geo-triangle_wf, 
Error :basic-geo-primitives_wf, 
geo-sep_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
Error :heyting-geometry_wf, 
subtype_rel_transitivity, 
heyting-geometry-subtype, 
basic-geometry-subtype, 
geo-colinear_wf, 
geo-triangle-colinear2, 
geo-triangle-symmetry, 
geo-triangle-colinear
Rules used in proof : 
rename, 
setElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (a  \#  bc
    {}\mRightarrow{}  x  \mneq{}  b
    {}\mRightarrow{}  Colinear(a;b;x)
    {}\mRightarrow{}  y  \mneq{}  c
    {}\mRightarrow{}  Colinear(b;c;y)
    {}\mRightarrow{}  z  \mneq{}  x
    {}\mRightarrow{}  Colinear(c;x;z)
    {}\mRightarrow{}  x  \#  yz)
Date html generated:
2017_10_02-PM-07_02_03
Last ObjectModification:
2017_08_06-PM-08_55_11
Theory : euclidean!plane!geometry
Home
Index