Nuprl Lemma : geo-triangle-colinear3

e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  (a bc  x ≠  Colinear(a;b;x)  y ≠  Colinear(b;c;y)  z ≠  Colinear(c;x;z)  yz)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  heyting-geometry: Error :heyting-geometry,  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] cand: c∧ B and: P ∧ Q
Lemmas referenced :  geo-point_wf Error :geo-triangle_wf,  Error :basic-geo-primitives_wf,  geo-sep_wf Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity heyting-geometry-subtype basic-geometry-subtype geo-colinear_wf geo-triangle-colinear2 geo-triangle-symmetry geo-triangle-colinear
Rules used in proof :  rename setElimination because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (a  \#  bc
    {}\mRightarrow{}  x  \mneq{}  b
    {}\mRightarrow{}  Colinear(a;b;x)
    {}\mRightarrow{}  y  \mneq{}  c
    {}\mRightarrow{}  Colinear(b;c;y)
    {}\mRightarrow{}  z  \mneq{}  x
    {}\mRightarrow{}  Colinear(c;x;z)
    {}\mRightarrow{}  x  \#  yz)



Date html generated: 2017_10_02-PM-07_02_03
Last ObjectModification: 2017_08_06-PM-08_55_11

Theory : euclidean!plane!geometry


Home Index