Step
*
2
1
1
of Lemma
unique-angles-in-half-plane-better2
.....antecedent.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. q : Point
6. a leftof bc
7. q leftof bc
8. qcb ≅a acb
9. u : Point
10. a-c-u
11. cu ≅ OX
12. q1 : Point
13. u-c-q1
14. cq1 ≅ cq
15. cb ≅ cb
16. cq ≅ cq1
17. bcq ≅a acb
⊢ acb ≅a bcq1
BY
{ (InstLemma `out-preserves-angle-cong_1` [⌜e⌝;⌜a⌝;⌜c⌝;⌜b⌝;⌜a⌝;⌜c⌝;⌜b⌝;⌜q1⌝;⌜b⌝;⌜a⌝;⌜b⌝]⋅ THEN EAuto 1) }
1
.....antecedent.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. q : Point
6. a leftof bc
7. q leftof bc
8. qcb ≅a acb
9. u : Point
10. a-c-u
11. cu ≅ OX
12. q1 : Point
13. u-c-q1
14. cq1 ≅ cq
15. cb ≅ cb
16. cq ≅ cq1
17. bcq ≅a acb
⊢ out(c aq1)
2
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. q : Point
6. a leftof bc
7. q leftof bc
8. qcb ≅a acb
9. u : Point
10. a-c-u
11. cu ≅ OX
12. q1 : Point
13. u-c-q1
14. cq1 ≅ cq
15. cb ≅ cb
16. cq ≅ cq1
17. bcq ≅a acb
18. q1cb ≅a acb
⊢ acb ≅a bcq1
Latex:
Latex:
.....antecedent.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. q : Point
6. a leftof bc
7. q leftof bc
8. qcb \mcong{}\msuba{} acb
9. u : Point
10. a-c-u
11. cu \mcong{} OX
12. q1 : Point
13. u-c-q1
14. cq1 \mcong{} cq
15. cb \mcong{} cb
16. cq \mcong{} cq1
17. bcq \mcong{}\msuba{} acb
\mvdash{} acb \mcong{}\msuba{} bcq1
By
Latex:
(InstLemma `out-preserves-angle-cong\_1` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}q1\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
THEN EAuto 1
)
Home
Index