Step * of Lemma use-basic-geo-axioms-lemma

No Annotations
g:EuclideanPlane
  (((∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)) ∧ (∀a,b,c:Point.  (ba>ac  c)) ∧ (∀a,b,c:Point.  bc ≥ aa))
  ∧ (∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef))
  ∧ (∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef))
  ∧ (∀a,b,c:Point.  (B(abc)   ac>ab))
  ∧ (∀a,b,c:Point.  (a leftof bc  leftof ca))
  ∧ (∀a,b,c:Point.  (a leftof bc  c))
  ∧ (∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc)))
  ∧ (∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD))
  ∧ (∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc)))
  ∧ (∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab))
  ∧ (∀a,b,c,y:Point.  (a bc   ab)  bc)))
BY
(((Intros THEN 1) THEN (Unhide THENA Auto) THEN Try ((Unhide THEN Auto))) THEN THEN Auto) }


Latex:


Latex:
No  Annotations
\mforall{}g:EuclideanPlane
    (((\mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  ab  \mgeq{}  cd))
      \mwedge{}  (\mforall{}a,b,c:Point.    (ba>ac  {}\mRightarrow{}  b  \#  c))
      \mwedge{}  (\mforall{}a,b,c:Point.    bc  \mgeq{}  aa))
    \mwedge{}  (\mforall{}a,b,c,d,e,f:Point.    (ab>cd  {}\mRightarrow{}  cd  \mgeq{}  ef  {}\mRightarrow{}  ab>ef))
    \mwedge{}  (\mforall{}a,b,c,d,e,f:Point.    (ab  \mgeq{}  cd  {}\mRightarrow{}  cd>ef  {}\mRightarrow{}  ab>ef))
    \mwedge{}  (\mforall{}a,b,c:Point.    (B(abc)  {}\mRightarrow{}  b  \#  c  {}\mRightarrow{}  ac>ab))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \#  c))
    \mwedge{}  (\mforall{}a,b,c,d:Point.    (B(abd)  {}\mRightarrow{}  B(bcd)  {}\mRightarrow{}  B(abc)))
    \mwedge{}  (\mforall{}a,b,c,d,A,B,C,D:Point.
              (a  \#  b  {}\mRightarrow{}  B(abc)  {}\mRightarrow{}  B(ABC)  {}\mRightarrow{}  ab  \mcong{}  AB  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  ad  \mcong{}  AD  {}\mRightarrow{}  bd  \mcong{}  BD  {}\mRightarrow{}  cd  \mcong{}  CD))
    \mwedge{}  (\mforall{}a,b,c,x,y:Point.    (ax  \mcong{}  ay  {}\mRightarrow{}  bx  \mcong{}  by  {}\mRightarrow{}  cx  \mcong{}  cy  {}\mRightarrow{}  x  \#  y  {}\mRightarrow{}  (\mneg{}a  \#  bc)))
    \mwedge{}  (\mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  B(xzy)  {}\mRightarrow{}  z  leftof  ab))
    \mwedge{}  (\mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \#  b  {}\mRightarrow{}  (\mneg{}y  \#  ab)  {}\mRightarrow{}  y  \#  bc)))


By


Latex:
(((Intros  THEN  D  1)  THEN  (Unhide  THENA  Auto)  THEN  Try  ((Unhide  THEN  Auto)))  THEN  D  2  THEN  Auto)




Home Index