Step
*
1
1
of Lemma
hyp-distance-lemma1
1. rv : InnerProductSpace
2. x : Point
3. y : Point
4. rsqrt(r1 + x^2) ∈ ℝ
5. rsqrt(r1 + y^2) ∈ ℝ
6. r0 ≤ rsqrt(r1 + x^2)
7. r0 ≤ rsqrt(r1 + y^2)
8. r0 ≤ (rsqrt(r1 + x^2) * rsqrt(r1 + y^2))
⊢ r1 + x ⋅ y^2 ≤ rsqrt(r1 + x^2) * rsqrt(r1 + y^2)^2
BY
{ (RWW "rnexp-rmul rsqrt-rnexp-2" 0 THENA Auto) }
1
1. rv : InnerProductSpace
2. x : Point
3. y : Point
4. rsqrt(r1 + x^2) ∈ ℝ
5. rsqrt(r1 + y^2) ∈ ℝ
6. r0 ≤ rsqrt(r1 + x^2)
7. r0 ≤ rsqrt(r1 + y^2)
8. r0 ≤ (rsqrt(r1 + x^2) * rsqrt(r1 + y^2))
⊢ r1 + x ⋅ y^2 ≤ ((r1 + x^2) * (r1 + y^2))
Latex:
Latex:
1.  rv  :  InnerProductSpace
2.  x  :  Point
3.  y  :  Point
4.  rsqrt(r1  +  x\^{}2)  \mmember{}  \mBbbR{}
5.  rsqrt(r1  +  y\^{}2)  \mmember{}  \mBbbR{}
6.  r0  \mleq{}  rsqrt(r1  +  x\^{}2)
7.  r0  \mleq{}  rsqrt(r1  +  y\^{}2)
8.  r0  \mleq{}  (rsqrt(r1  +  x\^{}2)  *  rsqrt(r1  +  y\^{}2))
\mvdash{}  r1  +  x  \mcdot{}  y\^{}2  \mleq{}  rsqrt(r1  +  x\^{}2)  *  rsqrt(r1  +  y\^{}2)\^{}2
By
Latex:
(RWW  "rnexp-rmul  rsqrt-rnexp-2"  0  THENA  Auto)
Home
Index