Step
*
of Lemma
hyptrans-perm_wf
∀[rv:InnerProductSpace]. ∀[e:Point]. ∀[t:ℝ]. hyptrans-perm(rv;e;t) ∈ Point supposing e^2 = r1
BY
{ (Auto THEN (InstLemma `translation-group-point` [⌜rv⌝;⌜e⌝;⌜λt,x. hyptrans(rv;e;t;x)⌝]⋅ THENA EAuto 1) THEN Reduce -1)\000C }
1
1. rv : InnerProductSpace
2. e : Point
3. t : ℝ
4. e^2 = r1
5. Point ≡ {fg:Point ⟶ Point × (Point ⟶ Point)|
∃t:ℝ. ((∀x:Point. (fst(fg)) x ≡ hyptrans(rv;e;t;x)) ∧ (∀x:Point. (snd(fg)) x ≡ hyptrans(rv;e;-(t);x)))}
⊢ hyptrans-perm(rv;e;t) ∈ Point
Latex:
Latex:
\mforall{}[rv:InnerProductSpace]. \mforall{}[e:Point]. \mforall{}[t:\mBbbR{}]. hyptrans-perm(rv;e;t) \mmember{} Point supposing e\^{}2 = r1
By
Latex:
(Auto
THEN (InstLemma `translation-group-point` [\mkleeneopen{}rv\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}\mlambda{}t,x. hyptrans(rv;e;t;x)\mkleeneclose{}]\mcdot{} THENA EAuto 1)
THEN Reduce -1)
Home
Index