Step
*
1
of Lemma
hyptrans-perm_wf
1. rv : InnerProductSpace
2. e : Point
3. t : ℝ
4. e^2 = r1
5. Point ≡ {fg:Point ⟶ Point × (Point ⟶ Point)|
∃t:ℝ. ((∀x:Point. (fst(fg)) x ≡ hyptrans(rv;e;t;x)) ∧ (∀x:Point. (snd(fg)) x ≡ hyptrans(rv;e;-(t);x)))}
⊢ hyptrans-perm(rv;e;t) ∈ Point
BY
{ (((SubsumeC ⌜{fg:Point ⟶ Point × (Point ⟶ Point)|
∃t:ℝ. ((∀x:Point. (fst(fg)) x ≡ hyptrans(rv;e;t;x)) ∧ (∀x:Point. (snd(fg)) x ≡ hyptrans(rv;e;-(t);x)))} \000C⌝
⋅
THEN Auto
)
THEN (MemTypeCD THENW Auto)
)
THEN RepUR ``hyptrans-perm`` 0
THEN Auto) }
Latex:
Latex:
1. rv : InnerProductSpace
2. e : Point
3. t : \mBbbR{}
4. e\^{}2 = r1
5. Point \mequiv{} \{fg:Point {}\mrightarrow{} Point \mtimes{} (Point {}\mrightarrow{} Point)|
\mexists{}t:\mBbbR{}
((\mforall{}x:Point. (fst(fg)) x \mequiv{} hyptrans(rv;e;t;x))
\mwedge{} (\mforall{}x:Point. (snd(fg)) x \mequiv{} hyptrans(rv;e;-(t);x)))\}
\mvdash{} hyptrans-perm(rv;e;t) \mmember{} Point
By
Latex:
(((SubsumeC \mkleeneopen{}\{fg:Point {}\mrightarrow{} Point \mtimes{} (Point {}\mrightarrow{} Point)|
\mexists{}t:\mBbbR{}
((\mforall{}x:Point. (fst(fg)) x \mequiv{} hyptrans(rv;e;t;x))
\mwedge{} (\mforall{}x:Point. (snd(fg)) x \mequiv{} hyptrans(rv;e;-(t);x)))\} \mkleeneclose{}\mcdot{}
THEN Auto
)
THEN (MemTypeCD THENW Auto)
)
THEN RepUR ``hyptrans-perm`` 0
THEN Auto)
Home
Index