Step * of Lemma implies-isometry-lemma3

No Annotations
rv:InnerProductSpace. ∀f:Point(rv) ⟶ Point(rv). ∀r:{r:ℝr0 < r} .
  ((∀x,y:Point(rv).  (x ≡  x ≡ y))
   (∀x,y:Point(rv).  (((||x y|| r) ∨ (||x y|| (r(2) r)))  (||f y|| ||x y||)))
   (∀n,m:ℕ+. ∀x,y:Point(rv).  ((||x y|| (r(n) r/r(m)))  (||f y|| ||x y||))))
BY
(InstLemma `implies-isometry-lemma2` []
   THEN RepeatFor (ParallelLast')
   THEN RepeatFor (((D THENA Auto) THEN ThinTrivial))) }

1
1. rv InnerProductSpace
2. Point(rv) ⟶ Point(rv)
3. {r:ℝr0 < r} 
4. ∀x,y:Point(rv).  (x ≡  x ≡ y)
5. ∀x,y:Point(rv).  (((||x y|| r) ∨ (||x y|| (r(2) r)))  (||f y|| ||x y||))
6. ∀x,y:Point(rv).  ((||x y|| r)  (∀j:ℕr(j)*y x ≡ r(j)*f x))
⊢ ∀n,m:ℕ+. ∀x,y:Point(rv).  ((||x y|| (r(n) r/r(m)))  (||f y|| ||x y||))


Latex:


Latex:
No  Annotations
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .
    ((\mforall{}x,y:Point(rv).    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y))
    {}\mRightarrow{}  (\mforall{}x,y:Point(rv).
                (((||x  -  y||  =  r)  \mvee{}  (||x  -  y||  =  (r(2)  *  r)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||)))
    {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}\msupplus{}.  \mforall{}x,y:Point(rv).    ((||x  -  y||  =  (r(n)  *  r/r(m)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||))))


By


Latex:
(InstLemma  `implies-isometry-lemma2`  []
  THEN  RepeatFor  3  (ParallelLast')
  THEN  RepeatFor  2  (((D  0  THENA  Auto)  THEN  ThinTrivial)))




Home Index