Step * 1 of Lemma implies-isometry-lemma3


1. rv InnerProductSpace
2. Point(rv) ⟶ Point(rv)
3. {r:ℝr0 < r} 
4. ∀x,y:Point(rv).  (x ≡  x ≡ y)
5. ∀x,y:Point(rv).  (((||x y|| r) ∨ (||x y|| (r(2) r)))  (||f y|| ||x y||))
6. ∀x,y:Point(rv).  ((||x y|| r)  (∀j:ℕr(j)*y x ≡ r(j)*f x))
⊢ ∀n,m:ℕ+. ∀x,y:Point(rv).  ((||x y|| (r(n) r/r(m)))  (||f y|| ||x y||))
BY
(Auto THEN Assert ⌜∃z:Point(rv). ((||z x|| (r(n) r)) ∧ (||z y|| (r(n) r)))⌝⋅}

1
.....assertion..... 
1. rv InnerProductSpace
2. Point(rv) ⟶ Point(rv)
3. {r:ℝr0 < r} 
4. ∀x,y:Point(rv).  (x ≡  x ≡ y)
5. ∀x,y:Point(rv).  (((||x y|| r) ∨ (||x y|| (r(2) r)))  (||f y|| ||x y||))
6. ∀x,y:Point(rv).  ((||x y|| r)  (∀j:ℕr(j)*y x ≡ r(j)*f x))
7. : ℕ+
8. : ℕ+
9. Point(rv)
10. Point(rv)
11. ||x y|| (r(n) r/r(m))
12. ¬((||x y|| r) ∨ (||x y|| (r(2) r)))
⊢ ∃z:Point(rv). ((||z x|| (r(n) r)) ∧ (||z y|| (r(n) r)))

2
1. rv InnerProductSpace
2. Point(rv) ⟶ Point(rv)
3. {r:ℝr0 < r} 
4. ∀x,y:Point(rv).  (x ≡  x ≡ y)
5. ∀x,y:Point(rv).  (((||x y|| r) ∨ (||x y|| (r(2) r)))  (||f y|| ||x y||))
6. ∀x,y:Point(rv).  ((||x y|| r)  (∀j:ℕr(j)*y x ≡ r(j)*f x))
7. : ℕ+
8. : ℕ+
9. Point(rv)
10. Point(rv)
11. ||x y|| (r(n) r/r(m))
12. ¬((||x y|| r) ∨ (||x y|| (r(2) r)))
13. ∃z:Point(rv). ((||z x|| (r(n) r)) ∧ (||z y|| (r(n) r)))
⊢ ||f y|| ||x y||


Latex:


Latex:

1.  rv  :  InnerProductSpace
2.  f  :  Point(rv)  {}\mrightarrow{}  Point(rv)
3.  r  :  \{r:\mBbbR{}|  r0  <  r\} 
4.  \mforall{}x,y:Point(rv).    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y)
5.  \mforall{}x,y:Point(rv).    (((||x  -  y||  =  r)  \mvee{}  (||x  -  y||  =  (r(2)  *  r)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||))
6.  \mforall{}x,y:Point(rv).    ((||x  -  y||  =  r)  {}\mRightarrow{}  (\mforall{}j:\mBbbN{}.  f  x  +  r(j)*y  -  x  \mequiv{}  f  x  +  r(j)*f  y  -  f  x))
\mvdash{}  \mforall{}n,m:\mBbbN{}\msupplus{}.  \mforall{}x,y:Point(rv).    ((||x  -  y||  =  (r(n)  *  r/r(m)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||))


By


Latex:
(Auto  THEN  Assert  \mkleeneopen{}\mexists{}z:Point(rv).  ((||z  -  x||  =  (r(n)  *  r))  \mwedge{}  (||z  -  y||  =  (r(n)  *  r)))\mkleeneclose{}\mcdot{})




Home Index