Step
*
1
of Lemma
ip-between-inner-trans
1. rv : InnerProductSpace
2. a : Point(rv)
3. b : Point(rv)
4. c : Point(rv)
5. d : Point(rv)
6. t1 : ℝ
7. t1 ∈ (r0, r1)
8. b ≡ t1*a + r1 - t1*d
9. t : ℝ
10. t ∈ (r0, r1)
11. c ≡ t*b + r1 - t*d
12. c # d
13. a # b
14. b # c
15. b # d
⊢ ∃t:ℝ. ((t ∈ (r0, r1)) ∧ b ≡ t*a + r1 - t*c)
BY
{ ((RWO "-8" 0 THENA Auto) THEN (RWO "-8" (-5) THENA Auto) THEN RenameVar `s' 6) }
1
1. rv : InnerProductSpace
2. a : Point(rv)
3. b : Point(rv)
4. c : Point(rv)
5. d : Point(rv)
6. s : ℝ
7. s ∈ (r0, r1)
8. b ≡ s*a + r1 - s*d
9. t : ℝ
10. t ∈ (r0, r1)
11. c ≡ t*s*a + r1 - s*d + r1 - t*d
12. c # d
13. a # b
14. b # c
15. b # d
⊢ ∃t:ℝ. ((t ∈ (r0, r1)) ∧ s*a + r1 - s*d ≡ t*a + r1 - t*c)
Latex:
Latex:
1. rv : InnerProductSpace
2. a : Point(rv)
3. b : Point(rv)
4. c : Point(rv)
5. d : Point(rv)
6. t1 : \mBbbR{}
7. t1 \mmember{} (r0, r1)
8. b \mequiv{} t1*a + r1 - t1*d
9. t : \mBbbR{}
10. t \mmember{} (r0, r1)
11. c \mequiv{} t*b + r1 - t*d
12. c \# d
13. a \# b
14. b \# c
15. b \# d
\mvdash{} \mexists{}t:\mBbbR{}. ((t \mmember{} (r0, r1)) \mwedge{} b \mequiv{} t*a + r1 - t*c)
By
Latex:
((RWO "-8" 0 THENA Auto) THEN (RWO "-8" (-5) THENA Auto) THEN RenameVar `s' 6)
Home
Index