Step
*
of Lemma
ip-extend
∀rv:InnerProductSpace. ∀a:Point. ∀b:{b:Point| a # b} . ∀c,d:Point. (∃x:{Point| (a_b_x ∧ bx=cd)})
BY
{ (((InstLemma `ip-extend-lemma` [] THEN RepeatFor 3 (ParallelLast')) THEN Auto)
THEN (InstHyp [⌜||c - d||⌝] (-3)⋅ THENA Auto)
THEN ParallelLast
THEN Auto) }
Latex:
Latex:
\mforall{}rv:InnerProductSpace. \mforall{}a:Point. \mforall{}b:\{b:Point| a \# b\} . \mforall{}c,d:Point. (\mexists{}x:\{Point| (a\_b\_x \mwedge{} bx=cd)\})
By
Latex:
(((InstLemma `ip-extend-lemma` [] THEN RepeatFor 3 (ParallelLast')) THEN Auto)
THEN (InstHyp [\mkleeneopen{}||c - d||\mkleeneclose{}] (-3)\mcdot{} THENA Auto)
THEN ParallelLast
THEN Auto)
Home
Index